PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Lifelogging system based on averaged Hidden Markov Models: dangerous activities recognition for caregiver support

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, a prototype lifelogging system for monitoring people with cognitive disabilities and elderly people as well as a method for the automatic detection of dangerous activities are presented. The system allows for the remote monitoring of observed people via an Internet website and respects the privacy of the people by displaying their silhouettes instead of their actual images. The application allows for the viewing of both real-time and historical data. The lifelogging data (skeleton coordinates) needed for posture and activity recognition are acquired using Microsoft Kinect 2.0. Several activities are marked as potentially dangerous and generate alarms sent to caregivers upon detection. Recognition models are developed using Averaged Hidden Markov Models with multiple learning sequences. Action recognition includes methods for dierentiating between normal and potentially dangerous activities (e.g., self-aggressive autistic behavior) using the same motion trajectory. Some activity recognition examples and results are presented.
Wydawca
Czasopismo
Rocznik
Strony
257--278
Opis fizyczny
Bibliogr. 23 poz., rys., wykr., tab.
Twórcy
autor
  • Wroclaw University of Science and Technology, Department of Computer Engineering, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland
autor
  • Wroclaw University of Science and Technology, Department of Computer Engineering, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland
Bibliografia
  • [1] Ann O.C., Theng L.B.: Human activity recognition: A review. In: 2014 IEEE International Conference on Control System, Computing and Engineering (ICCSCE 2014), pp. 389-393, 2014. http://dx.doi.org/10.1109/ICCSCE.2014.7072750.
  • [2] Gurrin C., Smeaton A.F., Doherty A.R.: LifeLogging: Personal Big Data, Foundations and Trends in Information Retrieval, vol. 8(1), pp. 1-125, 2014.http://dx.doi.org/10.1561/1500000033.
  • [3] Jalal A., Kamal S., Kim D.: A Depth Video Sensor-Based Life-Logging Human Activity Recognition System for Elderly Care in Smart Indoor Environments, Sensors, vol. 14(7), pp. 11735-11759, 2014. http://dx.doi.org/10.3390/s140711735.
  • [4] van Kasteren T.L.M., Englebienne G., Krose B.J.A.: An activity monitoring system for elderly care using generative and discriminative models, Personal and Ubiquitous Computing, vol. 14(6), pp. 489-498, 2010. http://dx.doi.org/10.1007/s00779-009-0277-9.
  • [5] Khan Z.A., Sohn W.: Abnormal human activity recognition system based on R-transform and kernel discriminant technique for elderly home care, IEEE Transactions on Consumer Electronics, vol. 57(4), pp. 1843-1850, 2011. http://dx.doi.org/10.1109/TCE.2011.6131162.
  • [6] Mann S.: Wearable Wireless Webcam. http://wearcam.org/netcam.html. Accessed on 11th of December 2017.
  • [7] Miaou S.G., Sung P.H., Huang C.Y.: A Customized Human Fall Detection System Using Omni-Camera Images and Personal Information. In: 1st Transdisciplinary Conference on Distributed Diagnosis and Home Healthcare, 2006. D2H2., pp. 39-42, 2006. http://dx.doi.org/10.1109/DDHH.2006.1624792.
  • [8] Nana P., Min D., Yue Z., Xin C., Sheng B.: The Elderly's Falling Motion Recognition Based on Kinect and Wearable Sensors, pp. 1129-1141. Springer International Publishing, Cham, 2017. http://dx.doi.org/10.1007/b978-3-319-48036-7_83.
  • [9] O'Hara K., Tueld M.M., Shadbolt N.: Lifelogging: Privacy and empowerment with memories for life, Identity in the Information Society, vol. 1(1), pp. 155-172, 2008. http://dx.doi.org/10.1007/s12394-009-0008-4.
  • [10] Pal M., Saha S., Konar A.: Distance matching based gesture recognition for healthcare using Microsoft's Kinect sensor. In: 2016 International Conference on Microelectronics, Computing and Communications (MicroCom), pp. 1-6. 2016. http://dx.doi.org/10.1109/MicroCom.2016.7522586.
  • [11] Popoola O.P., Wang K.: Video-Based Abnormal Human Behavior Recognition { A Review, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), vol. 42(6), pp. 865-878, 2012. http://dx.doi.org/10.1109/TSMCC.2011.2178594.
  • [12] Poritz A.B.: Hidden Markov models: a guided tour. In: International Conference on Acoustics, Speech, and Signal Processing ICASSP-88, pp. 7-13, 1988. http://dx.doi.org/10.1109/ICASSP.1988.196495.
  • [13] Postawka A.: Exercise Recognition Using Averaged Hidden Markov Models, pp. 137-147, Springer International Publishing, Cham, 2017. http://dx.doi.org/10.1007/978-3-319-59060-8_14.
  • [14] Postawka A.: Real-time monitoring system for potentially dangerous activities detection. In: 2017 22nd International Conference on Methods and Models in Automation and Robotics (MMAR), pp. 1005-1008. 2017. http://dx.doi.org/10.1109/MMAR.2017.8046967.
  • [15] Postawka A., Śliwiński P.: A Kinect-Based Support System for Children with Autism Spectrum Disorder, pp. 189-199. Springer International Publishing, Cham, 2016. http://dx.doi.org/10.1007/978-3-319-39384-1_17.
  • [16] Rabiner L.R., Juang B.H.: An introduction to hidden Markov models, IEEE ASSP Magazine, vol. 3, pp. 4-16, 1986. http://dx.doi.org/10.1109/MASSP.1986.1165342.
  • [17] Rowe M., Lane S., Phipps C.: CareWatch: A Home Monitoring System for Use in Homes of Persons With Cognitive Impairment, Topics in Geriatric Rehabilitation, vol. 23(1), pp. 3-8, 2007.
  • [18] Siddiqui S.A., Snober Y., Raza S., Khan F.M., Syed T.Q.: Arm gesture recognition on Microsoft Kinect using a Hidden Markov Model-based representations of poses. In: 2015 International Conference on Information and Communication Technologies (ICICT), pp. 1-6, 2015. http://dx.doi.org/10.1109/ICICT. 2015.7469478.
  • [19] Wu P., Peng H.K., Zhu J., Zhang Y.: SensCare: Semi-automatic Activity Summarization System for Elderly Care, pp. 1-19, Springer Berlin Heidelberg, Berlin, Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-32320-1_1.
  • [20] Yin J., Yang Q., Pan J.J.: Sensor-Based Abnormal Human-Activity Detection, IEEE Transactions on Knowledge and Data Engineering, vol. 20(8), pp. 1082-1090, 2008. http://dx.doi.org/10.1109/TKDE.2007.1042.
  • [21] Yoshihara Y., Tang D., Kubota N.: Life Log Visualization System Based on Informationally Structured Space for Supporting Elderly People. In: 2013 Second International Conference on Robot, Vision and Signal Processing, pp. 78-83, 2013. http://dx.doi.org/10.1109/RVSP.2013.25.
  • [22] Yu M., Rhuma A., Naqvi S.M., Wang L., Chambers J.: A Posture Recognition-Based Fall Detection System for Monitoring an Elderly Person in a Smart Home Environment, IEEE Transactions on Information Technology in Biomedicine, vol. 16(6), pp. 1274-1286, 2012. http://dx.doi.org/10.1109/TITB.2012.2214786.
  • [23] Yu X., Wu L., Liu Q., Zhou H.: Children tantrum behaviour analysis based on Kinect sensor. In: 2011 Third Chinese Conference on Intelligent Visual Surveillance, pp. 49-52. 2011. http://dx.doi.org/10.1109/IVSurv.2011.6157022.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-edc241db-8173-44be-b6b1-190e0a663d72
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.