Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In the process of coal gasification, the phase transition from water to water vapour takes place as a result of high temperature. Thus, the parameters of the fluid flowing through the pores of the elastic skeleton change in a significant way. The goal of this work is to calculate the fluid flow process at a variable temperature using Finite Element Method and to determine the soil consolidation process taking place under its own weight and temperature changes. The mathematical model of thermal consolidation for a Biot body accounts for the phase transition of a liquid. Numerical calculations for a homogeneous and isotropic porous medium, consisting of two conventionally accepted layers, were carried out using the Flex PDE v.6 software. The obtained results are a first approximation of the actual processes taking place under complex geological conditions. They make it possible to determine, in approximation, the range of the phase transition and the influence of water vapour filtration on soil consolidation.
Wydawca
Czasopismo
Rocznik
Tom
Strony
1163--1178
Opis fizyczny
Bibliogr. 12 poz.
Twórcy
autor
- Wrocław University of Technology, Institute of Geotechnics and Hydrotechnics, Wrocław, Poland
autor
- Wrocław University of Technology, Institute of Geotechnics and Hydrotechnics, Wrocław, Poland
Bibliografia
- 1. Auriault, J.L. (1991), Dynamic behaviour of porous media. In: J. Bear and M.Y. Corapcioglu (eds.), Transport Processes in Porous Media, NATO ASI Series, Vol. 202, 473-519, DOI: 10.1007/978-94-011-3628-0_9.
- 2. Auriault, J.L., and E. Sanchez-Palencia (1977), Etude de comportement macroscopique d’un milieu poreux saturé déformable, J. Mecanique16, 4, 575-603.
- 3. Auriault, J.L., T. Strzelecki, J. Bauer, and S. He (1990), Porous deformable media saturated by a very compressible fluid: quasi-statistics, Eur. J. Mech. A9, 4, 373-392.
- 4. Biot, M.A. (1941), General theory of three-dimensional consolidation, J. Appl. Phys. 12, 2, 155-164, DOI: 10.1063/1.1712886.
- 5. Biot, M.A. (1955), Theory of elasticity and consolidation for a porous anisotropic solid, J. Appl. Phys. 26, 2, 182-185, DOI: 10.1063/1.1721956.
- 6. Coussy, O. (1995), Mechanics of Porous Continua, John Wiley & Sons, Chichester.
- 7. Coussy, O. (2011), Mechanics and Physics of Porous Solids, 2nd ed., John Wiley & Sons, Chichester, 296 pp.
- 8. Derski, W. (1978), Equations of motion for a fluid-saturated porous solid, Bull. Acad. Pol. Sci. Tech. 26, 1, 11-16.
- 9. Sanchez-Palencia, E. (1980), Non-homogeneous Media and Vibration Theory, Lecture Notes in Physics, Vol. 127, Springer, Berlin, DOI: 10.1007/3-540-10000-8.
- 10. Stańczyk, K., J. Dubiński, K. Cybulski, M. Wiatowski, J. Świądrowski, K. Kapusta, J. Rogut, A. Smoliński, E. Krause, and J. Grabowski (2010), Underground coal gasification experiments from around the world and experiments con-ducted at KD Barbara, Energy Policy13, 2, 423-433 (in Polish).
- 11. Strzelecki, T., J. Bauer, and J.L. Auriault (1993), Constitutive equation of a gas-filled two-phase medium, Transport Porous Med.10, 2, 197-202, DOI: 10.1007/BF00617008.
- 12. Strzelecki, T., S. Kostecki, and S. Żak (2008), Modelling Flow Through Porous Media, Lower Silesian Educational Publ., Wrocław (in Polish).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-edbe1294-5bc1-4ff9-96fc-3ca44da7c883