PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Phytoplankton pigments and functional community structure in relation to environmental factors in the Pearl River Estuary

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Two cruises were undertaken in the Pearl River Estuary in November 2011 and March 2012 to analyze the distribution of phytoplankton pigments and to define the relationships of pigment indices and functional community structure with environmental factors. Among 22 pigments, 17 were detected by high-performance liquid chromatography. Chlorophyll a was found in all samples, with a maximum of 7.712 μg L-1 in spring. Fucoxanthin was the most abundant accessory pigment, with mean concentrations of 2.914 μg L-1 and 0.207 μg L-1 in spring and autumn, respectively. Chlorophyll a, chlorophyll c2, fucoxanthin, diadinoxanthin, and diatoxanthin were high in the northern or northwest estuary in spring and in the middle-eastern and northeast estuary in autumn. Chlorophyll b, chlorophyll c3, prasinoxanthin, and peridinin were similarly distributed during the two cruises. Chlorophyll a and fucoxanthin positively correlated with nutrients in spring, whereas 19′-hex-fucoxanthin and 19′-but-fucoxanthin negatively correlated. The biomass proportion of microphytoplankton (BPm) was higher in spring, whereas that of picophytoplankton (BPp) was higher in autumn. BPm in spring was high in areas with salinity <30, but BPp and the biomass proportion of nanophytoplankton (BPn) were high in areas with salinity >30. BPm increased but BPn reduced with the increase in nutrient contents. By comparison, BPp reduced with the increase in nutrient contents in spring, but no relationship was found between BPp and nutrient contents in autumn. The ratios of photosynthetic carotenoids to photoprotective carotenoids in the southern estuary approached unity linear relationship in spring and were under the unity line in autumn.
Czasopismo
Rocznik
Strony
201--211
Opis fizyczny
Bibliogr. 54 poz., tab., wykr., mapy
Twórcy
autor
  • Qingdao Engineering Research Center for Rural Environment, Qingdao Agricultural University, Qingdao, China
  • Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
autor
  • Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
autor
  • Research Center for Harmful Algae and Marine Biology, Jinan University, Guangzhou, China
autor
  • College of Life Sciences, Qingdao Agricultural University, Qingdao, China
autor
  • Research Center for Harmful Algae and Marine Biology, Jinan University, Guangzhou, China
Bibliografia
  • [1] Agawin, N. R. S., Duarte, C. M., Agustí, S., 2000. Nutrient and temperature control of the contribution of picoplankton to phytoplankton biomass and production. Limnol. Oceanogr. 45 (3), 591—600.
  • [2] Aneeshkumar, N., Sujatha, C. H., 2012. Biomarker pigment signatures in Cochin back water system — a tropical estuary south west coast of India. Estuar. Coast. Shelf Sci. 99, 182—190.
  • [3] Badylak, S., Phlips, E. J., 2004. Spatial and temporal patterns of phytoplankton composition in a subtropical coastal lagoon, the Indian River Lagoon, Florida, USA. J. Plankton Res. 26 (10), 1229—1247.
  • [4] Barlow, R. G., Aiken, J., Holligan, P. M., Cummings, D. G., Maritorena, S., Hooker, S., 2002. Phytoplankton pigment and absorption characteristics along meridional transects in the Atlantic Ocean. Deep-Sea Res. Pt. I 49 (4), 637—660.
  • [5] Barlow, R., Kyewalyanga, M., Sessions, H., Van den Berg, M., Morris, T., 2008. Phytoplankton pigments, functional types, and absorption properties in the Delagoa and Natal Bights of the Agulhas ecosystem. Estuar. Coast. Shelf Sci. 80 (2), 201—211.
  • [6] Barlow, R., Stuart, V., Lutz, V., Sessions, H., Sathyendranath, S., Platt, T., Kyewalyanga, M., Clementson, L., Fukasawa, M., Watanabe, S., Devred, E., 2007. Seasonal pigment patterns of surface phytoplankton in the subtropical southern hemisphere. Deep-Sea Res. Pt. I 54 (10), 1687—1703.
  • [7] Bulletin of Water Resources in the Pearl River Drainage, 2011. Commission of Water Resources of Pearl River, Ministry of Water Resources of the People's Republic of China, http://www. pearlwater.gov.cn/xxcx/szygg/.
  • [8] Bulletin of Water Resources in the Pearl River Drainage, 2012. Commission of Water Resources of Pearl River, Ministry of Water Resources of the People's Republic of China, http://www. pearlwater.gov.cn/xxcx/szygg/.
  • [9] Chen, B. Z., Liu, H. B., 2010. Relationships between phytoplankton growth and cell size in surface oceans: interactive effects of temperature, nutrients, and grazing. Limnol. Oceanogr. 55 (3), 965—972.
  • [10] Chisholm, S. W., 1992. Phytoplankton size. In: Falkowski, P. G., Woodheard, A. D. (Eds.), Primary Productivity and Biogeochemical Cycles in the Sea. Plenum Press, New York, 213—238.
  • [11] Finkel, Z. V., Sebbo, J., Feist-Burkhardt, S., Irwin, A. J., Katz, M. E., Schofield, O. M. E., Falkowski, P. G., 2007. A universal driver of macroevolutionary change in the size of marine phytoplankton over the Cenozoic. Proc. Natl. Acad. Sci. U.S.A. 104, 20416—20420.
  • [12] Finkel, Z. V., Vaillancourt, C. J., Irwin, A. J., Reavie, E. D., Smol, J. P., 2009. Environmental control of diatom community size structure varies across aquatic ecosystems. Proc. R. Soc. B 276, 1627—1634.
  • [13] Gibb, S. W., Barlow, R. G., Cummings, D. G., Rees, N. W., Trees, C. C., Holligan, P., Suggett, D., 2000. Surface phytoplankton pigment distributions in the Atlantic Ocean: an assessment of basin scale variability between 508N and 508S. Prog. Oceanogr. 45 (3—4), 339—368.
  • [14] Gibb, S. W., Cummings, D. G., Irigoien, X., Barlow, R. G., Fauzi, R., Mantoura, C., 2001. Phytoplankton pigment chemotaxonomy of northeastern Atlantic. Deep-Sea Res. Pt. II 48 (4—5), 795—823.
  • [15] Grasshoff, K., Erhardt, M., Kremiling, K., 1983. Methods of Seawater Analysis. Verlag Chemie, Wienhien, 632 pp.
  • [16] Harrison, P. J., Yin, K. D., Lee, J. H. W., Gan, J. P., Liu, H. B., 2008. Physical—biological coupling in the Pearl River Estuary. Cont. Shelf Res. 28 (12), 1405—1415.
  • [17] He, B. Y., Dai, M. H., Zhai, W. D., Guo, X. H., Wang, L. F., 2014. Hypoxia in the upper reaches of the Pearl River Estuary and its maintenance mechanisms: a synthesis based on multiple year observations during 2000—2008. Mar. Chem. 167 (20), 13—24.
  • [18] Huang, L. M., Jian, W. J., Song, X. Y., Huang, X. P., Liu, S., Qian, P. Y., Yin, K. D., Wu, M., 2004. Species diversity and distribution for phytoplankton of the Pearl River estuary during rainy and dry seasons. Mar. Pollut. Bull. 49 (7—8), 588—596.
  • [19] Huete-Ortega, M., Marañon, E., Varela, M., Bode, A., 2010. General patterns in the size scaling of phytoplankton abundance in coastal waters during a 10-year time series. J. Plankton Res. 32 (1), 1—14.
  • [20] Jeffrey, S. W., Mantoura, R. F. C., Bjørnland, T., 1997. Data for the identification of 47 key phytoplankton pigments. In: Jeffrey, S. W., Mantoura, R. F. C., Wright, S. W. (Eds.), Phytoplankton Pigments in Oceanography: Guidelines to Modern Methods. Monographs on Oceanographic Methodology. UNESCO, Paris, 449—559.
  • [21] Jeffrey, S., Mantoura, R., Wright, S. (Eds.), 2005. Phytoplankton Pigments in Oceanography. Guidelines to Modern Methods. Monographs on Oceanographic Methodology, 2nd ed. UNESCO, Paris, 661 pp.
  • [22] Kiørboe, T., 1993. Turbulence, phytoplankton cell size, and the structure of pelagic food webs. Adv. Mar. Biol. 29, 1—72.
  • [23] Lerman, A., 1981. Control on river water composition and the mass balance of river systems. In: Martin, J. M., Burton, J. D., Eisma, D. (Eds.), River Inputs to Ocean Systems. Proceedings of a SCOR/ ACMRR/ECOR/IAHS/UNESCO/CMG/IABO/IAPSO Review and Work- shop, 26—30 March 1979, UNEP and UNESCO, Rome.
  • [24] Li, G., Lin, Q., Lin, J. D., Song, X. Y., Tan, Y. H., Huang, L. M., 2014. Environmental gradients regulate the spatial variations of phytoplankton biomass and community structure in surface water of the Pearl River estuary. Acta Ecol. Sin. 34 (2), 129—133.
  • [25] Li, L., Lu, S. H., Jiang, T., Li, X., 2013. Seasonal variation of size-fractionated phytoplankton in the Pearl River estuary. Chin. Sci. Bull. 58 (19), 2303—2314.
  • [26] Lu, Z. M., Gan, J. P., 2015. Controls of seasonal variability of phytoplankton blooms in the Pearl River Estuary. Deep-Sea Res. Pt. II 117, 86—96.
  • [27] Lutz, V. A., Sathyendranath, S., Head, E. J. H., Li, W. K. W., 2003. Variability in pigment composition and optical characteristics of phytoplankton in the Labrador Sea and the Central North Atlantic. Mar. Ecol. Prog. Ser. 260, 1—18.
  • [28] Marañon, E., 2009. Phytoplankton size structure. In: Steele, J. H., Turekian, K. K., Thorpe, S. A. (Eds.), Encyclopedia of Ocean Sciences. 2nd ed. Amsterdam, Elsevier, 445—452.
  • [29] Marañón, E., Cermeño, P., Rodríguez, J., Zubkov, M. V., Harris, R. P., 2007. Scaling of phytoplankton photosynthesis and cell size in the ocean. Limnol. Oceanogr. 52 (5), 2190—2198.
  • [30] Margalef, R., 1978. Life forms of phytoplankton as survival alter-natives in an unstable environment. Oceanol. Acta 1 (4), 493— 509.
  • [31] Moreno, D. V., Marrero, P., Morales, J., Llerandi García, C., Villagarcía Úbed, M. G., Rueda, M. J., Llinás, O., 2012. Phytoplankton functional community structure in Argentinian continental shelf determined by HPLC pigment signatures. Estuar. Coast. Shelf Sci. 100, 72—81.
  • [32] Naik, R. K., Anil, A. C., Narale, D. D., Chitari, R. R., Kulkarni, V. V., 2011. Primary description of surface water phytoplankton pigment patterns in the Bay of Bengal. J. Sea Res. 65 (4), 435—441.
  • [33] Paerl, H. W., Valdes, L. M., Pinckney, J. L., Piehler, M. F., Dyble, J., Moisander, P. H., 2003. Phytoplankton photopigments as indicators of estuarine and coastal eutrophication. BioScience 53 (10), 953— 964.
  • [34] Phlips, E. J., Badylak, S., Lynch, T. C., 1999. Blooms of the picoplanktonic cyanobacterium Synechococcus in Florida Bay, a subtropical inner-shelf lagoon. Limnol. Oceanogr. 44 (4), 1166—1175.
  • [35] Qiu, D. J., Huang, L. M., Zhang, J. L., Lin, S. J., 2010. Phytoplankton dynamics in and near the highly eutrophic Pearl River Estuary, South China Sea. Cont. Shelf Res. 30 (2), 177—186.
  • [36] Reul, A., Rodríguez, J., Blanco, J. M., Rees, A. P., Burkill, P. H., 2006. Control of microplankton size structure in contrasting water columns of Celtic Sea. J. Plankton Res. 28 (5), 449—457.
  • [37] Riegman, R., Kuipers, B. R., Noordeloos, A. A. M., Witte, H. J., 1993. Size-differential control of phytoplankton and the structure of plankton communities. Netherlands J. Sea Res. 31, 255—265.
  • [38] Roy, R., Pratihary, A., Mangesh, G., Naqvi, S. W. A., 2006. Spatial variation of phytoplankton pigments along the southwest coast of India. Estuar. Coast. Shelf Sci. 69 (1—2), 189—195.
  • [39] Sieburth, J. M., Smetacek, V., Lenz, J., 1978. Pelagic ecosystem structure: heterotrophic compartments of the plankton and their relationship to plankton size fractions. Limnol. Oceanogr. 23 (6), 1256—1263.
  • [40] Thingstad, T. F., 1998. Theoretical approach to structuring mechanisms in the pelagic food web. Hydrobiologia 363 (1—3), 59—72.
  • [41] Trees, C. C., Clark, D. K., Bidigare, R. R., Ondrusek, M. E., Mueller, J. L., 2000. Accessory pigments versus chlorophyll a concentrations within the euphotic zone: a ubiquitous relationship. Limnol. Oceanogr. 45 (5), 1130—1143.
  • [42] Veldhuis, M. J. W., Kraay, G. W., 2004. Phytoplankton in the subtropical Atlantic Ocean: towards a better assessment of biomass and composition. Deep-Sea Res. Pt. I 51 (4), 507—530.
  • [43] Vidussi, F., Claustre, H., Manca, B., Luchetta, A., Marty, J., 2001. Phytoplankton pigment distribution in relation to upper thermocline circulation in the eastern Mediterranean Sea during winter. J. Geophys. Res. 106 (C9), 19939—19956.
  • [44] Vijayan, A. K., Yoshikawa, T., Watanabe, S., Sasaki, H., Matsumoto, K., Saito, S. I., Takeda, S., Furuya, K., 2009. Influence on non-photosynthetic pigments on light absorption and quantum yield of photosynthesis in the western equatorial pacific and the subarctic north pacific. J. Oceanogr. 65 (2), 245—258.
  • [45] Wright, S. W., Jeffrey, S. W., 2006. Pigment markers for phytoplankton production. The Handbook of Environmental Chemistry, vol. 2, Part N. 71—104.
  • [46] Yin, K., 2003. Influence of monsoons and oceanographic processes on red tides in Hong Kong in the vicinity of the Pearl River Estuary. Mar. Ecol. Prog. Ser. 262, 27—41.
  • [47] Yin, K., Qian, P. Y., Chen, J. C., Hsieh, D. P., Harrison, P. J., 2000. Dynamics of nutrients and phytoplankton biomass in the Pearl River estuary and adjacent waters of Hong Kong during summer: preliminary evidence for phosphorus and silicon limitation. Mar. Ecol. Prog. Ser. 194, 295—305.
  • [48] Yin, K., Qian, P. Y., Chen, J. F., Huang, L., Zhang, J., Wu, M., 2004. Effect of wind events on phytoplankton blooms in the Pearl River Estuary during summer. Cont. Shelf Res. 24 (16), 1909—1923.
  • [49] Yin, K., Qian, P. Y., Wu, M. C. S., Chen, J. C., Huang, L. M., Song, X. Y., Jian, W. J., 2001. Shift from P to N limitation of phytoplankton growth across the Pearl River estuarine plume during summer. Mar. Ecol. Prog. Ser. 221, 17—28.
  • [50] Zapata, M., Rodríguez, F., Garrido, J. L., 2000. Separation of chlorophylls and carotenoids from marine phytoplankton: a new HPLC method using a reversed phase C8 column and pyridine-containing mobile phases. Mar. Ecol. Prog. Ser. 195, 29—45.
  • [51] Zhai, W., Dai, M., Cai, W. J., Wang, Y., Wang, Z., 2005. High partial pressure of CO2 and its maintaining mechanism in a subtropical estuary: the Pearl River estuary, China. Mar. Chem. 93, 21—32.
  • [52] Zhang, X., Huang, X. P., Shi, Z., Ye, F., Liu, Q. X., 2013. Spatial and temporal variation of picophytoplankton in the Pearl River Estuary. Acta Ecol. Sin. 33 (7), 2200—2211, (in Chinese with English abstract).
  • [53] Zhang, X., Zhang, J. P., Huang, X. P., Huang, L. M., 2014. Phytoplankton assemblage structure shaped by key environmental variables in the Pearl River Estuary, South China. J. Ocean Univ. China 13 (1), 1—10.
  • [54] Zhao, H., 1990. Evolution of the Pearl River Estuary. Ocean Press, Beijing, (in Chinese).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-edbc4f0d-5bf0-4e33-85a4-d4b9a9fec6e9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.