PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Power quality enhancement in hybrid photovoltaic-battery system based on three-level inverter associated with DC bus voltage control

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This modest paper presents a study on the energy quality produced by a hybrid system consisting of a Photovoltaic (PV) power source connected to a battery. A three-level inverter was used in the system studied for the purpose of improving the quality of energy injected into the grid and decreasing the Total Harmonic Distortion (THD). A Maximum Power Point Tracking (MPPT) algorithm based on a Fuzzy Logic Controller (FLC) is used for the purpose of ensuring optimal production of photovoltaic energy. In addition, another FLC controller is used to ensure DC bus stabilization. The considered system was implemented in the Matlab/Simpower environment. The results show the effectiveness of the proposed inverter at three levels in improving the quality of energy injected from the system into the grid.
Rocznik
Strony
272--282
Opis fizyczny
Bibliogr. 43 poz., rys., tab., wykr.
Twórcy
autor
  • Laboratory of L2GEGI, University of Tiaret, 14000, Algeria
autor
  • Laboratory of L2GEGI, University of Tiaret, 14000, Algeria
autor
  • Laboratory of L2GEGI, University of Tiaret, 14000, Algeria
autor
  • Laboratory of L2GEGI, University of Tiaret, 14000, Algeria
Bibliografia
  • [1] P. Kakosimos, K. Pavlou, A. Kladas, S. Manias, A single-phase ninelevel inverter for renewable energy systems employing model predictive control, Energy Conversion and Management 89 (2015) 427–437.
  • [2] N. Eghtedarpour, E. Farjah, Control strategy for distributed integration of photovoltaic and energy storage systems in dc micro-grids, Renewable energy 45 (2012) 96–110.
  • [3] K. Arulkumar, D. Vijayakumar, K. Palanisamy, Modeling and control strategy of three phase neutral point clamped multilevel pv inverter connected to the grid, Journal of Building Engineering 3 (2015) 195–202.
  • [4] A. Chouder, S. Silvestre, N. Sadaoui, L. Rahmani, Modeling and simulation of a grid connected pv system based on the evaluation of main pv module parameters, Simulation Modelling Practice and Theory 20 (1) (2012) 46–58.
  • [5] S. Ozdemir, N. Altin, I. Sefa, Single stage three level grid interactive mppt inverter for pv systems, Energy Conversion and Management 80 (2014) 561–572.
  • [6] N. Altin, S. Ozdemir, Three-phase three-level grid interactive inverter with fuzzy logic based maximum power point tracking controller, Energy Conversion and Management 69 (2013) 17–26.
  • [7] A. Oshaba, E. Ali, S. A. Elazim, Mppt control design of pv system supplied srm using bat search algorithm, Sustainable Energy, Grids and Networks 2 (2015) 51–60.
  • [8] T. Esram, P. L. Chapman, Comparison of photovoltaic array maximum power point tracking techniques, IEEE Transactions on energy conversion 22 (2) (2007) 439–449.
  • [9] F. Liu, S. Duan, F. Liu, B. Liu, Y. Kang, A variable step size inc mppt method for pv systems, IEEE Transactions on industrial electronics 55 (7) (2008) 2622–2628.
  • [10] Q. Mei, M. Shan, L. Liu, J. M. Guerrero, A novel improved variable step-size incremental-resistance mppt method for pv systems, IEEE transactions on industrial electronics 58 (6) (2011) 2427–2434.
  • [11] S. K. M. Niapour, S. Danyali, M. Sharifian, M. Feyzi, Brushless dc motor drives supplied by pv power system based on z-source inverter and fl-ic mppt controller, Energy Conversion and Management 52 (8) (2011) 3043–3059.
  • [12] M. Alata, M. Al-Nimr, Y. Qaroush, Developing a multipurpose sun tracking system using fuzzy control, Energy Conversion and Management 46 (7) (2005) 1229–1245.
  • [13] M. Ouada, M. Meridjet, M. Saoud, N. Talbi, Increase efficiency of photovoltaic pumping system based bldc motor using fuzzy logic mppt control, WSEAS Transactions on Power Systems 8 (3) (2013) 104–113.
  • [14] F. Aashoor, F. Robinson, Maximum power point tracking of photovoltaic water pumping system using fuzzy logic controller, in: Power Engineering Conference (UPEC), 2013 48th International Universities’, IEEE, 2013, pp. 1–5.
  • [15] L. Letting, J. Munda, Y. Hamam, Optimization of a fuzzy logic controller for pv grid inverter control using s-function based pso, Solar Energy 86 (6) (2012) 1689–1700.
  • [16] M. Ouada, M. S. Meridjet, N. Talbi, Optimization photovoltaic pumping system based bldc using fuzzy logic mppt control, in: Renewable and Sustainable Energy Conference (IRSEC), 2013 International, IEEE, 2013, pp. 27–31.
  • [17] X. Feng, H. Gooi, S. Chen, Hybrid energy storage with multimode fuzzy power allocator for pv systems, IEEE Transactions on Sustainable Energy 5 (2) (2014) 389–397.
  • [18] H. Zhang, S. Cheng, A new mppt algorithm based on ann in solar pv systems, in: Advances in Computer, Communication, Control and Automation, Springer, 2011, pp. 77–84.
  • [19] M. A. Younis, T. Khatib, M. Najeeb, A. M. Ariffin, An improved maximum power point tracking controller for pv systems using artificial neural network, Przegląd Elektrotechniczny 88 (3b) (2012) 116–121.
  • [20] N. Altin, ˙I. Sefa, dspace based adaptive neuro-fuzzy controller of grid interactive inverter, Energy Conversion and Management 56 (2012) 130–139.
  • [21] A. Bahgat, N. Helwa, G. Ahmad, E. El Shenawy, Maximum power point traking controller for pv systems using neural networks, Renewable Energy 30 (8) (2005) 1257–1268.
  • [22] A. A. Kulaksiz, R. Akkaya, Training data optimization for anns using genetic algorithms to enhance mppt efficiency of a stand-alone pv system, Turkish Journal of Electrical Engineering & Computer Sciences 20 (2) (2012) 241–254.
  • [23] H.-T. Yau, Q.-C. Liang, C.-T. Hsieh, Maximum power point tracking and optimal li-ion battery charging control for photovoltaic charging system, Computers & Mathematics with Applications 64 (5) (2012) 822–832.
  • [24] D. Parra, G. S. Walker, M. Gillott, Modeling of pv generation, battery and hydrogen storage to investigate the benefits of energy storage for single dwelling, Sustainable Cities and Society 10 (2014) 1–10.
  • [25] K. Himour, K. Ghedamsi, E. M. Berkouk, Supervision and control of grid connected pv-storage systems with the five level diode clamped inverter, Energy Conversion and Management 77 (2014) 98–107.
  • [26] N.-K. C. Nair, N. Garimella, Battery energy storage systems: Assessment for small-scale renewable energy integration, Energy and Buildings 42 (11) (2010) 2124–2130.
  • [27] E. Rejovitzky, C. V. Di Leo, L. Anand, A theory and a simulation capability for the growth of a solid electrolyte interphase layer at an anode particle in a li-ion battery, Journal of the Mechanics and Physics of Solids 78 (2015) 210–230.
  • [28] S. Anuphappharadorn, S. Sukchai, C. Sirisamphanwong, N. Ketjoy, Comparison the economic analysis of the battery between lithiumion and lead-acid in pv stand-alone application, Energy Procedia 56 (2014) 352–358.
  • [29] A. Salvadori, D. Grazioli, M. Geers, Governing equations for a twoscale analysis of li-ion battery cells, International Journal of Solids and Structures 59 (2015) 90–109.
  • [30] M. Abbes, J. Belhadj, New control method of a robust npc converter for renewable energy sources grid connection, Electric Power Systems Research 88 (2012) 52–63.
  • [31] G. Tsengenes, G. Adamidis, A multi-function grid connected pv system with three level npc inverter and voltage oriented control, Solar Energy 85 (11) (2011) 2595–2610.
  • [32] J. Alonso-Martı, S. Arnaltes, et al., Direct power control of grid connected pv systems with three level npc inverter, Solar Energy 84 (7) (2010) 1175–1186.
  • [33] C. Bharatiraja, R. Palanisamy, S. S. Dash, et al., Hysteresis current controller based transformerless split inductor-npc-mli for grid connected pv-system, Procedia Engineering 64 (2013) 224–233.
  • [34] D. Lalili, A. Mellit, N. Lourci, B. Medjahed, C. Boubakir, State feedback control and variable step size mppt algorithm of three-level gridconnected photovoltaic inverter, Solar Energy 98 (2013) 561–571.
  • [35] A. Ravi, P. Manoharan, J. V. Anand, Modeling and simulation of three phase multilevel inverter for grid connected photovoltaic systems, Solar Energy 85 (11) (2011) 2811–2818.
  • [36] R. Shalchi Alishah, M. Barzegar, D. Nazarpour, A new cascade boost inverter for photovoltaic applications with minimum number of elements, International Transactions on Electrical Energy Systems 25 (7) (2015) 1241–1256.
  • [37] L. W. Yao, J. Aziz, P. Y. Kong, N. Idris, Modeling of lithium-ion battery using matlab/simulink, in: Industrial Electronics Society, IECON 2013-39th Annual Conference of the IEEE, IEEE, 2013, pp. 1729–1734.
  • [38] H. Beltran, M. Swierczynski, A. Luna, G. Vazquez, E. Belenguer, Photovoltaic plants generation improvement using li-ion batteries as energy buffer, in: Industrial Electronics (ISIE), 2011 IEEE International Symposium on, IEEE, 2011, pp. 2063–2069.
  • [39] M. M. Aly, E. Abdelkarim, M. Abdel-Akher, Mitigation of photovoltaic power generation fluctuations using plug-in hybrid electric vehicles storage batteries, International Transactions on Electrical Energy Systems 25 (12) (2015) 3720–3737.
  • [40] J. D. Barros, J. F. Silva, Optimal predictive control of three-phase npc multilevel converter for power quality applications, IEEE Transactions on Industrial Electronics 55 (10) (2008) 3670–3681.
  • [41] F. Merahi, E. M. Berkouk, Back-to-back five-level converters for wind energy conversion system with dc-bus imbalance minimization, Renewable Energy 60 (2013) 137–149.
  • [42] T. Noguchi, et al., A new three-level current-source pwm inverter and its application for grid connected power conditioner, Energy Conversion and Management 51 (7) (2010) 1491–1499.
  • [43] Q. Shi, H. Hu, W. Xu, J. Yong, Low-order harmonic characteristics of photovoltaic inverters, International Transactions on Electrical Energy Systems 26 (2) (2016) 347–364.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-edb37169-e523-4f84-b4e4-27742c5edfb5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.