PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Hydrodynamic model of the new waterway through the Vistula Spit

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The decision to build a new waterway (strait) in the Polish part of the Vistula Spit was made in 2017. The new connection between the Gulf of Gdańsk and the Vistula Lagoon is planned as an artificial navigable channel with a lock and a small port. During storm surges and wind tides in the gulf or in the lagoon, sluicing will be required for vessels to tackle the Vistula Spit. This procedure does not require significant water flow through the channel in normal conditions. However, in the case of a lock failure or in the case of controlled opening of the gate to increase water exchange in the lagoon or to reduce flood risk in the Vistula Lagoon, high flow rates may occur in the navigable channel and in the neighboring port basin. In order to inves-tigate the hydraulic conditions in such extraordinary situations, numerical modeling of the hydrodynamics during water damming in the gulf or in the lagoon is performed. To analyze the hydrodynamics of the artificial connection between the sea and the lagoon during periods of high water stages, mathematical modeling is required. This paper presents the shallow water equations (SWE) model adapted to simulate the flow through the port basin and the navigable channel. The calcula-tions allowed the relation between the water head and the capacity of the navigable channel to be found, as well as to analyze circulations which may occur in the port basin.
Rocznik
Tom
Strony
159--167
Opis fizyczny
Bibliogr. 29 poz., rys., tab.
Twórcy
  • Gdańsk University of Technology Faculty of Civil and Environmental Engineering, 11/12 Gabriela Narutowicza Street, 80-233 Gdańsk, Poland
  • Gdańsk University of Technology Faculty of Civil and Environmental Engineering, 11/12 Gabriela Narutowicza Street, 80-233 Gdańsk, Poland
Bibliografia
  • 1. Szymkiewicz, R. Hydrodynamics of Vistula Lagoon; Warsaw, 1992.
  • 2. Cieśliński, R. Hydrochemical variability of the ecosystem of the Gulf of Elbląg (north-eastern Poland). Baltica 2016, 29, 121–132.
  • 3. Cieśliński, R.; Lewandowski, A. Hydrological regime of the Vistula Lagoon and the possible changes due to the construction of the waterway connecting the Vistula Bay with the Gulf of Gdansk. Inżynieria Morska i Geotechnika 2013, 69–78.
  • 4. Chubarenko, I.P.; Chubarenko, B.V. General water dynamics of the Vistula Lagoon. Environmental and Chemical Physics 2002, 24, 213–217.
  • 5. Szydłowski, M.; Kolerski, T.; Zima, P. Impact of the artificial strait in the Vistula Spit on the hydrodynamics of the Vistula Lagoon (Baltic Sea). Water 2019, 11, 990.
  • 6. Szymkiewicz, R. A mathematical model of storm surge in the Vistula Lagoon, Poland. Coastal Engineering 1992, 16, 181–203.
  • 7. Nadolny, A.; Samulak, M. Construction of a waterway connecting the Vistula Lagoon with the Bay of Gdańsk 2017.
  • 8. García-Oliva, M.; Pérez-Ruzafa, Á.; Umgiesser, G.; McKiver, W.; Ghezzo, M.; De Pascalis, F.; Marcos, C. Assessing the hydrodynamic response of the Mar Menor Lagoon to dredging inlets tinterventions through numerical modelling. Water 2018, 10, 959.
  • 9. Dubrawski, R.; Zachowicz, J. Navigation channel in the Vistula Spit – Positives and negatives for the marine environment. Inżynieria Morska i Geotechnika 1997, 301–307.
  • 10. Dembicki, E.; Jednorał, T.; Sedler, B.; Jaśkowski, J.; Zadroga, B. Navigation channel in Polish part of Vistula Sandbar. Inżynieria Morska i Geotechnika 2006, 275–286.
  • 11. Szymkiewicz, R. Analysis of a concept of changing the hydrodynamic conditions of the Vistula Lagoon. Inżynieria Morska 1984, 258–260.
  • 12. Toro, E.F. Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction; 3rd ed.; Springer-Verlag: Berlin Heidelberg, 2009; ISBN 978-3-540-25202-3.
  • 13. Chow, V.T. Open-channel hydraulics; McGraw-Hill Book Company: New York, 1959;
  • 14. Zima, P. Modeling of the two-dimensional flow caused by sea conditions and wind stresses on the example of Dead Vistula. Polish Maritime Research 2018, 25, 166–171.
  • 15. Gąsiorowski, D. Analysis of floodplain inundation using 2D nonlinear diffusive wave equation solved with splitting technique. Acta Geophys. 2013, 61, 668–689.
  • 16. Szydłowski, M. Mathematical modelling of flash floods in natural and urban areas. In Proceedings of the Transboundary Floods: Reducing Risks Through Flood Management; Marsalek, J., Stancalie, G., Balint, G., Eds.; Springer Netherlands, 2006; pp. 143–153.
  • 17. Kolerski, T.; Zima, P.; Szydłowski, M. Mathematical modeling of ice thrusting on the shore of the Vistula Lagoon (Baltic Sea) and the proposed artificial island. Water 2019, 11, 2297.
  • 18. Kwiatkowski, J.; Rasmussen, E.K.; Ezhova, E.; Chubarenko, B.V. The eutrophication model of the Vistula Lagoon. Oceanological Studies 1997, 26, 5–33.
  • 19. Chubarenko, I.; Tchepikova, I. Modelling of man-made contribution to salinity increase into the Vistula Lagoon (Baltic Sea). Ecological Modelling 2001, 138, 87–100.
  • 20. Ołdakowski, B.; Kwiatkowski, J. Forecast model of water quality of Vistula Lagoon. Inżynieria Morska i Geotechnika 1995.
  • 21. Bielecka, M.; Kazmierski, J. A 3d mathematical model of Vistula Lagoon hydrodynamics – General assumptions and results of preliminary calculations; ECSA 8, Dublin, 2003; pp. 140–145.
  • 22. Kruk, M.; Kempa, M.; Tjomsland, T.; Durand, D. The use of mathematical models to predict changes in the environment of the Vistula Lagoon. In Vistula Lagoon – Natural environment and modern methods of his research project on the example of Visla; Publishing PWSZ: Elbląg, 2011; pp. 165–180.
  • 23. LeVeque, R.J. Finite Volume Methods for Hyperbolic Problems; Cambridge University Press, 2002; ISBN 978-0-521-00924-9.
  • 24. Burzyński, K.; Szydłowski, M. Numerical simulation of rapidly varied water flow in ‘Wild River’ type water slide. Archives of Hydro-Engineering and Environmental Mechanics 2003, 50, 3–23.
  • 25. Szydłowski, M. Numerical simulation of open channel flow between bridge piers. TASK Quarterly 2011, 15, 271–282.
  • 26. Szydłowski, M. Numerical modeling of hydrodynamics as a tool for design of the leisure and sport water structures. Acta Scientiarum Polonorum – Formatio Circumiectus 2016, 15, 353–367.
  • 27. Szydłowski, M.; Mikos-Studnicka, P. Shallow water equations as a mathematical model of whitewater course hydrodynamics. In Recent Trends in Environmental Hydraulics; Geoplanet: Earth and Planetary Sciences; Springer Berlin Heidelberg: Berlin Heidelberg, 2020; p. accepted to publish.
  • 28. Szydłowski, M. Application of hydrodynamics model for a case study of the Kolbudy II Reservoir Embankment hypothetical failure. In Experimental Methods in Hydraulic Research; Rowinski, P., Ed.; Geoplanet: Earth and Planetary Sciences; Springer Berlin Heidelberg: Berlin, Heidelberg, 2011; pp. 299–306 ISBN 978-3-642-17475-9.
  • 29. Szydłowski, M.; Kolerski, T. Numerical modeling of water and ice dynamics for analysis of flow around the Kiezmark Bridge piers. In Free Surface Flows and Transport Processes; Geoplanet: Earth and Planetary Sciences; Springer Berlin Heidelberg: Berlin, Heidelberg, 2018; pp. 465–476.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-edb00d7d-ce36-4176-a73c-9969123bf561
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.