Identyfikatory
Warianty tytułu
Emissions modelling using microscopic traffic simulation
Języki publikacji
Abstrakty
W artykule poruszono zagadnienia związane z modelowaniem emisji spalin z wykorzystaniem mikroskopowych symulacji ruchu drogowego. Celem pracy było opracowanie modelu ruchu, na podstawie którego możliwe jest obliczenie emisji z pojazdów z uwzględnieniem typu skrzyżowania oraz wartości natężeń ruchu. W artykule skupiono się na wartościach zużycia paliwa i emisji dwutlenku węgla. Przeanalizowano literaturę w zakresie czynników wpływających na emisję, które zależne są od człowieka, pojazdu i infrastruktury. Dokonano przeglądu matematycznych modeli pozwalających na obliczenie wartości chwilowych, często związanych ze zużyciem paliwa, które stanowią podstawę do oszacowania emisji. Wybrany model został zaimplementowany do modułu oprogramowania mikrosymulacyjnego w celu analizy wielkości emisji, w zależności od natężenia ruchu na skrzyżowaniu o ruchu okrężnym i skrzyżowaniu z pierwszeństwem przejazdu. Przedstawiono wyniki badań z uwzględnieniem wariantów modeli sieci obejmujących jedynie dojazd i przejazd przez skrzyżowanie oraz niezależnie uwzględniających rozpędzanie pojazdów za skrzyżowaniem. W końcowym fragmencie artykułu objęto dyskusją wybrane założenia, możliwe do uwzględnienia w analizach i mające wpływ na osiągnięte wyniki, omówiono kwestie dokładności modelu oraz zaproponowano rozwiązania pozwalające na zwiększenie poziomu szczegółowości osiąganych wyników.
The article deals with issues related to modeling of exhaust emissions using microscopic traffic simulations. The aim of the study was to develop a traffic model that can be used to calculate vehicle emissions taking into account the type of intersection and traffic volumes. The article focuses on fuel consumption and carbon dioxide emission values. The literature was analyzed for factors affecting emissions that depend on human, vehicle, and infrastructure. Mathematical models were reviewed to calculate instantaneous values, often related to fuel consumption, which form the basis for estimating emissions. The selected model was implemented in a microsimulation software module to analyze emissions as a function of traffic volume at a roundabout intersection and a priority intersection. The results are presented for variants of network models that include only the approach and crossing of the intersection and those that independently account for vehicle acceleration beyond the intersection. The final part of the article discusses the selected assumptions that can be taken into account in the analyses and have an impact on the results obtained. It also discusses the issues of model accuracy and proposes solutions that enable an increase in the level of detail of obtained results.
Czasopismo
Rocznik
Tom
Strony
18--25
Opis fizyczny
Bibliogr. 43 poz., rys., tab., wykr.
Twórcy
autor
- doktorant, Katedra Inżynierii Drogowej i Transportowej, Wydział Inżynierii Lądowej i Środowiska, Politechnika Gdańska, ul. Gabriela Narutowicza 11/12, 80-233 Gdańsk
autor
- Katedra Inżynierii Drogowej i Transportowej, Wydział Inżynierii Lądowej i Środowiska, Politechnika Gdańska, ul. Gabriela Narutowicza 11/12, 80-233 Gdańsk
Bibliografia
- 1. Ferenchak N.N., Katirai M., Pedestrian Crossing Behavior in Relation to Grouping and Gender in a Developing Country Context. Journal of Global Epidemiology and Environmental Health, 2017, https://doi.org/10.29199/geeh.101018.
- 2. Lloyd L., Wallbank C., Broughton J., Cuerden R., Estimating the potential impact of vehicle secondary safety regulations and consumer testing programs on road casualties in emerging markets, Journal of Transportation Safety and Security, 2017, 9(1), https://doi.org/10.1080/19439962.2016.1228091.
- 3. Eurostat Passenger Cars, by Size and Type of Fuel Engine, 2021, Retrieved from http://ec.europa.eu/eurostat/data/database.
- 4. Machado C. A. S., Hue N. P. M. de S., Berssaneti F. T., Quintanilha J. A., An overview of shared mobility, Sustainability (Switzerland), 2018, 10(12), https://doi.org/10.3390/su10124342.
- 5. Lerner W., The Future of Urban Mobility. Towards Networked, Multimodal Cities of 2050, 2011, https://robertoigarza.files. wordpress.com/2009/07/rep-the-future-of-urban-mobility- 2050-little-2011.pdf [dostęp: 7.08.2019], Arthur D. Little, (October), 28.
- 6. Schäfer A. W., Long-Term Trends in Domestic US Passenger Travel: The Past 110 Years and the Next 90, Transportation (amst), 2017, (44).
- 7. European Commission, Transport in the European Union Current Trends and Issues, March 2019.
- 8. Oskarbski J., Birr K., Żarski K., Bicycle traffic model for sustainable urban mobility planning, Energies, 2021, 14(18), https://doi.org/10.3390/en14185970.
- 9. Oecd & International Transport Forum, Reducing transport greenhouse gas emissions, Trends & Data, 2010. Oecd, 1–94.
- 10. Parlament Europejski, Emisje CO2 z samochodów fakty i liczby, 2019, https://www.europarl.europa.eu/news/pl/headlines/society/ 20190313STO31218/emisje-co2-z-samochodowfakty- -liczby-infografika.
- 11. EEA & DG-CLIMA, 2022, Average CO2 emissions per km from new passenger cars, https://ec.europa.eu/eurostat/databrowser/view/t2020_rk330/default/table?lang=en.
- 12. Roselló X., Langeland A., Viti F., Public Transport in the Era of ITS: The Role of Public Transport in Sustainable Cities and Regions, Springer Tracts on Transportation and Traffic, 2016, Vol. 1004, https://doi.org/10.1007/978-3-319-25082-3_4.
- 13. Nouri P., Morency C., Untangling the Impacts of Various Factors on Emission Levels of Light Duty Gasoline Vehicles, 2015, (October), https://doi.org/10.13140/RG.2.2.11428.48008.
- 14. Sullivan J. L., Baker R.E., Policy Analysis CO 2 Emission Benefit of Diesel (versus Gasoline), “Powered Vehicles”, 2004, 38(12).
- 15. Kan Z., Tang L., Kwan M.P., Zhang X., Estimating vehicle fuel consumption and emissions using GPS big data, International Journal of Environmental Research and Public Health, 2018, 15(4), https://doi.org/10.3390/ijerph15040566.
- 16. Chen C., Zhao X., Liu H., Ren G., Zhang Y., Liu X, Assessing the influence of adverse weather on traffic flow characteristics using a driving simulator and VISSIM, Sustainability (Switzerland), 2019, 11(3), 1–16, https://doi.org/10.3390/su11030830.
- 17. Edwardes W., Rakha H., Virginia tech comprehensive power-based fuel consumption model, Transportation Research Record, 2014, 2428(312), https://doi.org/10.3141/2428-01.
- 18. Leung D. Y. C., Williams D. J., Modelling of motor vehicle fuel consumption and emissions using a power-based model, Environmental Monitoring and Assessment, 2000, 65(1–2), https://doi.org/10.1007/978-94-010-0932-4_3.
- 19. Bengler K., Drüke J., Hoffmann S., Manstetten D., Neukum A., {UR:BAN} Human Factors in Traffic: Approaches for Safe, Efficient and Stress-free Urban Traffic, 2017, https://market.android. com/details?id=book-S2gpDwAAQBAJ.
- 20. Biggs D.C., Akcelik R., Models for Estimation of Car Fuel Consumption in Urban Traffic, “ITE Journal” (Institute of Transportation Engineers), 1986, 56(7).
- 21. Gaca S., Suchorzewski W., Tracz M., Inżynieria ruchu drogowego, 2014.
- 22. Treiber M., Kesting A., Thiemann C., How Much does Traffic Congestion Increase Fuel Consumption and Emissions? Applying a Fuel Consumption Model to the NGSIM Trajectory Data, Transportation Research Board, August 2018.
- 23. Krajzewicz D., Behrisch M., Wagner P., Luz R., Krumnow M., Second generation of pollutant emission models for SUMO, Lecture Notes in Control and Information Sciences, 2015, 13, 203–221, https://doi.org/10.1007/978-3-319-15024-6_12.
- 24. Kun C., Lei Y. U., Microscopic Traffic-Emission Simulation and Case Study for Evaluation of Traffic Control Strategies, “Journal of transportation systems engineering and information technology”, 2007, Vol. 7.
- 25. Mandavilli S., Russell E., Rys M., Impact of Modern Roundabouts on Vehicular Emissions, Proceedings of the 2003 Mid-Continent Transportation Research Symposium, Ames, IA, USA, August 2003.
- 26. Bie Y., Qiu T. Z., Zhang C., Zhang C., Introducing weather factor modelling into macro traffic state prediction, Journal of Advanced Transportation, 2017, https://doi.org/10.1155/2017/4879170.
- 27. Jonkers E., Klunder G., Mahmod M., Benz T., Methodology and framework architecture for the evaluation of effects of ICT measures on CO2 emissions, 20th ITS World Congress Tokyo, 2013, 1–9.
- 28. Higgs B., Abbas M., Medina A., Analysis of the Wiedemann Car Following Model over Different Speeds using Naturalistic Data, 3rd International Conference on …, 2011, http://onlinepubs.trb. org/onlinepubs/conferences/2011/RSS/3/Higgs,B.pdf.
- 29. Pourabdollah M., Bjarkvik E., Furer F., Lindenberg B., Burgdorf K., Calibration and evaluation of car following models using real-world driving data, IEEE Conference on Intelligent Transportation Systems, Proceedings, ITSC, 2018-March(October), https://doi.org/10.1109/ITSC.2017.8317836.
- 30. Gastaldi M., Meneguzzer C., Rossi R., Lucia L. Della, Gecchele G., Evaluation of air pollution impacts of a signal control to roundabout conversion using microsimulation, Transportation Research Procedia, 3, July 2014, https://doi.org/10.1016/j.trpro.2014.10.083
- 31. Oskarbski J., Gumińska L., Żarski K., Influence of toll collection method on motorways on traffic safety and efficiency, Communications in Computer and Information Science, 2018, Vol. 897, https://doi.org/10.1007/978-3-319-97955-7_10.
- 32. Oskarbski J., Kaszubowski D., Applying a mesoscopic transport model to analyse the effects of urban freight regulatory measures on transport emissions-an assessment, Sustainability (Switzerland), 2018, 10(7), https://doi.org/10.3390/su10072515.
- 33. Oskarbski J., Zarski K., Methodology of research on the impact of ramp metering on the safety and efficiency of road traffic using transport models, 6th International Conference on Models and Technologies for Intelligent Transportation Systems (MTITS), 2019, Cracow, Poland: IEEE. https://doi.org/10.1109/MTITS.2019.8883355.
- 34. Oskarbski J., Kamiński T., Kyamakya K., Chedjou J.C., Żarski K., Pędzierska M., Assessment of the speed management impact on road traffic safety on the sections of motorways and expressways sing simulation methods, Sensors (Switzerland), 2020, 20(18), https://doi.org/10.3390/s20185057.
- 35. Toledo T., Koutsopoulos H.N., Davol A., Ben-Akiva M.E., Burghout W., Andréasson, I., … Andréasson, I. (n.d.). Calibration and Validation of Microscopic Traffic Simulation Tools Stockholm Case Study.
- 36. Oskarbski J., Żarski K., Uwarunkowania realizacji kontrapasa autobusowego w zmiennokierunkowej organizacji ruchu, „Transport Miejski i Regionalny”, 2020, nr 5.
- 37. HBEFA Handbook emission factors for road transport, 2010, https://www.hbefa.net/e/index.html.
- 38. Salamati K., Rouphail N.M., Frey H.C., Liu B., Schroeder B.J., Simplified method for comparing emissions in roundabouts and at signalized intersections, Transportation Research Record, 2015, 2517(2517), https://doi.org/10.3141/2517-06.
- 39. Meneguzzer C., Gastaldi M., Rossi, R., Gecchele G., Prati M.V., Comparison of exhaust emissions at intersections under traffic signal versus roundabout control using an instrumented vehicle, Transportation Research Procedia, 2017, 25, https://doi.org/10.1016/j.trpro.2017.05.204.
- 40. PTV Vissim Emission model DLL interface documentation, PTV AG, 2017, http://cgi.ptvgroup.com/download/ptv_vision/VISSIM/downloads/API/API_VISSIM_DriverModel_DLL.zip.
- 41. Szczegółowe warunki techniczne dla znaków drogowych pionowych i warunki ich umieszczania na drogach, Załącznik nr 1, 2019.
- 42. PTV Vissim. User Manual, PTV Group, 2022.
- 43. Natural Resources Canada, Learn the facts: Fuel consumption and CO2, 2016, Autosmart, 2, 1–2, http://www.nrcan.gc.ca/sites/www.nrcan.gc.ca/files/oee/pdf/transportation/fuel-efficient-technologies/autosmart_factsheet_6_e.pdf.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-edadd680-6287-4501-87af-3484ef294f7e