Powiadomienia systemowe
- Sesja wygasła!
Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The main goal of the article is to present the concept of using a simulation environment when designing an advanced fibre-optic seismometer (FOS) using a field-programmable gate array (FPGA) computing system. The first part of the article presents the advanced requirements regarding the FOS principle of operation, as well as the measurement method using a closed-loop operation. The closed-loop control algorithm is developed using the high-level language C++ and then it is synthesised into an FPGA. The following part of the article describes the simulation environment developed to test the operation of the control algorithm. The environment includes a model of components of the measurement system, delays, and distortions in the signal processing path, and some of the measurement system surroundings. The article ends with a comparison of simulation data with measurements. The obtained results are consistent and prove correctness of the methodology adopted by the authors.
Wydawca
Czasopismo
Rocznik
Tom
Strony
art. no. e150179
Opis fizyczny
Bibliogr. 22 poz., rys., tab., wykr.
Twórcy
autor
- Department of Microelectronics and Computer Science, Lodz University of Technology, ul. Wolczanska 221, 93-005 Lodz, Poland
autor
- Department of Microelectronics and Computer Science, Lodz University of Technology, ul. Wolczanska 221, 93-005 Lodz, Poland
autor
- Department of Microelectronics and Computer Science, Lodz University of Technology, ul. Wolczanska 221, 93-005 Lodz, Poland
autor
- Department of Microelectronics and Computer Science, Lodz University of Technology, ul. Wolczanska 221, 93-005 Lodz, Poland
autor
- Department of Microelectronics and Computer Science, Lodz University of Technology, ul. Wolczanska 221, 93-005 Lodz, Poland
autor
- Department of Microelectronics and Computer Science, Lodz University of Technology, ul. Wolczanska 221, 93-005 Lodz, Poland
autor
- Institute of Applied Physics, Military University of Technology, ul. gen. Sylwestra Kaliskiego 2, 00-908 Warszawa, Poland
- Elproma Elektronika Sp. z o.o., ul. Duńska 2A, 05-152 Czosnów, Poland
Bibliografia
- [1] Lefẻvre, H. C. The Fibre-Optic Gyroscope. 2nd Ed. (Artech House, 2014).
- [2] Jaroszewicz, L. R. Review of the usefulness of various rotational seismometers with laboratory results of fibre-optic ones tested for engineering applications. Sensors 16, 2161 (2016). htpps://doi.org/10.3390/s16122161.
- [3] Lee, W. H. K., Celebi, M., Todorovska, M. & Igel, H. Introduction to the special issue on rotational seismology and engineering applications. Bull. Seismol. Soc. Am. 99, 945-957 (2009). https://doi.org/10.1785/01.20080344.
- [4] Jaroszewicz, L. R, Dudek, M., Kurzych, A. T. & Teisseyre, K. P. A test performance of optical fibre sensors for real-time investigations of rotational seismic events: a case study in laboratory and field conditions. Opto-Electron. Rev. 29, 213-219 (2021). https://doi.org/10.24425/opelre.2021.140102.
- [5] Havskov, J. & Alguacil, G. Instrumentation in Earthquake Seismology. 2nd Ed. (Springer, 2016).
- [6] DiVincenzo D. Computers are becoming faster and faster, but their speed is still limited by the physical restrictions of an electron moving through matter. What technologies are emerging to break through this speed barrier? SCIAM https://www.scientificamerican.com/article/computers-are-becoming-fa/ (Accessed: Dec. 31st, 2023).
- [7] Max Maxfield, C. M. Bebop to the Boolean Boogie. An Unconventional Guide to Electronics, 3rd Ed. 235-249, (Elsevier Inc., 2009). https://doi.org/10.1016/B978-1-85617-507-4.X0001-0.
- [8] Lin, M. & El Gamal, A. A low-power field-programmable gate array routing. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 17, 1481-1494 (2009). https://doi.org/10.1109/TVLSI.2008.2005098.
- [9] Sagnac, G. L’éther lumineux démontré par l’effet du vent relatif d’éther dans un interféromètre en rotation uniforme. C. R. Acad. Sci., 157, 708-710 (1913). (IN FRENCH).
- [10] Post, E. J. Sagnac Effect. Rev. Mod. Phys. 39, 475-494 (1967). https://doi.org/10.1103/RevModPhys.39.475.
- [11] Jaroszewicz, L. R., Krajewski, Z. & Teisseyre, K. P. Usefulness of AFORS - Autonomous fibre-optic rotational seismograph for investigation of rotational phenomena. J. Seismol. 16, 573-586 (2012). https://doi.org/10.1007/s10950-011-9258-3.
- [12] Vali, V. & Shorthill, R. W. Fibre ring interferometer. Appl. Opt. 15, 1099-1100 (1976). https://doi.org/10.1364/AO.15.001099.
- [13] Ulrich, R. Fibre-optic rotation sensing with low drift. Opt. Let. 5, 173-175 (1980). https://doi.org/10.1364/OL.5.000173.
- [14] Arditty, H., Papuchon, M. & Puech, C. Ring Interferometer Device and Its Application to the Detection of Non-Reciprocal Effects. U.S. Patent # 4 480 915 (1984).
- [15] Martin, J. M. & Winkler, J. T. Fibre-optic laser gyro signal detection and processing technique. Proc SPIE. 139, 98-103 (1978). https://doi.org/10.1117/12.956249.
- [16] Lefèvre, H. C., Vatoux, S., Papuchon, M. & Puech, C. Integrated optics: a practical solution for the fibre-optic gyroscope. Proc SPIE. 719, 101-112 (1986). https://doi.org/10.1117/12.937545.
- [17] Lefèvre, H. C. & Martin, P. Optical-Fibre Measuring Device Gyrometer, Central Navigation And Satisfying Systems. U.S. Patent # 5 141 316 (1992).
- [18] Bernauer, F., Wassermann, J. & Igel, H. Rotational sensors-a comparison of different sensor types. J. Seismol. 16, 595-602 (2012). https://doi.org/10.1007/s10950-012-9286-7.
- [19] IEEE Standard Specification Format Guide and Test Procedure for Single-Axis Interferometric Fibre Optic Gyros, IEEE-SA Standards Board 952 (1998).
- [20] Allan Variance: Noise Analysis for Gyroscopes. Freescale Semiconductor Inc. (2015). https://telesens.co/wp-content/uploads/2017/05/AllanVariance5087-1.pdf.
- [21] ug902 HLS User Guide. Xilinx https://www.xilinx.com (Acessed: Nov. 21st, 2023).
- [22] KRIA 26. Xilinx https://www.xilinx.com/products/som/kria/k26c-commercial.html (Acessed: Nov. 21st, 2023).
Uwagi
1. Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
2. This work has been made under financial support of the National Centre for Research and Development project POIR.01.01.01-00-1553/20-00 “FOSREM – from Sky across Ground up to Underground”.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-edaa5108-a807-41f8-b7fc-af3745120b22