Powiadomienia systemowe
- Sesja wygasła!
Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Determination of rainfall maxima from long-term series is one of the more important tasks in urban hydrology. These maxima are useful both in designing land drainage systems and for flood protection in a catchment. The identification of rainfall maxima for the hierarchy of rainfall durations from 5 min to 4 320 min is a fundamental stage of the creation of the first version of the Polish Atlas of Rainfall Intensities (PANDa), which will ultimately be a source of updated and reliable information on design rainfall intensities for designing and modeling rainwater drainage and retention systems in Poland. One of the methods for identifying extreme rainfall events is to use criteria for selecting rainfall based on their depth for a given rainfall frequency and duration. Existing national experience in this respect is based on the results of analyses usually conducted with regard to records from single weather stations. This article presents the results of a study designed to verify the usefulness of the literature-based criteria for identifying rainfall maxima using the peaks-over-threshold (POT) method at a much broader nationwide scale. The study analyzed data from a previously created digital database of rainfall series, which includes 3 000 stationyears (consisting of a 30-year measurement series from 100 weather stations of the Institute of Meteorology and the Water Management - National Research Institute (IMGW-PIB). The study results show that as far as the investigated measurement series are concerned, the criteria based on the literature sources have limited application and can only be used for identifying the largest short-duration rainfall events. To determine rainfall maxima for all of the time intervals analyzed (from 5 minutes to 3 days), it was necessary to develop our own criteria that would allow the methodology for identifying extreme rainfall events to be standardized for all 100 stations.
Rocznik
Tom
Strony
3--13
Opis fizyczny
Bibliogr. 34 poz., rys., tab.
Twórcy
autor
- Wrocław University of Environmental and Life Sciences, Institute of Environmental Engineering, pl. Grunwaldzki 24, 50-363 Wrocław, Poland
autor
- Wrocław University of Technology, Faculty of Environmental Engineering, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
autor
- Institute of Meteorology and Water Management - National Research Institute, Podleśna 61, 01-673 Warsaw, Poland
Bibliografia
- Avanzi F., De Michele C., 2015, Orographic signature on extreme precipitation of short durations, Journal of Hydrometeorology, 16, 278-294, DOI: 10.1175/JHM-D-14-0063.1
- Bartels H., Malitz G., Asmus S., Albrecht F. M., Dietzer B., Günther T., Ertel H., 1997, Starkniederschlagshöhen für Deutschland (1951-2000), KOSTRA-DWD-2000, Selbsverlag des Deutschen Wetterdienstes. Offenbach am Main, available at https://www.dwd.de/DE/fachnutzer/wasserwirtschaft/ kooperationen/kostra/fortschreibung_pdf.pdf%3F_blob%3DpublicationFile%26v%3D3 (20.07.2018).
- Bezak N., Brilly M., Šraj M., 2014, Comparison between the peaks-over-threshold method and the annual maximum method for flood frequency analysis, Hydrological Sciences Journal, 59 (5), 959-977, DOI: 10.1080/02626667.2013.831174.
- Bogdanowicz E., Stachy J., 1998, Maximum rainfall in Poland. Project characteristics, (in Polish), Materiały Badawcze IMGW. Seria: Hydrologia i Oceanologia, 23, 85 pp.
- Bommier E., 2014, Peaks-Over-Threshold modelling of environmental data, U.U.D.M. Project Report 2014:33, Uppsala Universitet, available at https://uu.diva-portal.org/smash/get/ diva2:760802/FULLTEXT01.pdf (20.07.2018).
- Byczkowski A., Banasik K., Hejduk L., 2008, The calculation of probable annual flood flows, (in Polish), Infrastruktura i Ekologia Terenów Wiejskich, 5, 199-208.
- Coles S., 2001, An introduction to statistical modeling of extreme values, Springer Series in Statistics, Springer, 209 pp.
- Dupuis D.J., 1998, Exceedances over high thresholds: A guide to threshold selection, Extremes, 1 (3), 251-261, DOI: 10.1023/A:1009914915709.
- Gharib A., Davies E.G.R., Goss G.G., Faramarzi M., 2017, Assessment of the combined effects of threshold selection and parameter estimation of Generalized Pareto Distribution with applications to flood frequency analysis, Water, 9 (9), 692, DOI: 10.3390/w9090692.
- Hailegeorgis T.T., Alfredsen K., 2017, Analyses of extreme precipitation and runoff events including uncertainties and reliability in design and management of urban water infrastructure, Journal of Hydrology, 544, 290-305, DOI: 10.1016/j. jhydrol.2016.11.037.
- Joshi D., St-Hilaire A., 2013, Low Flow Frequency analysis of three rivers in Eastern Canada, Institut National De la Recherche Scientifique, Centre Eau, Terre et Environnement (INRS-ETE), Québec, available at http://espace.inrs. ca/2663/1/I322.pdf (20.07.2018).
- Kaźmierczak B., Kotowski A., 2012, Depth-duration-frequency rainfall model for dimensioning and modelling of Wrocław drainage systems, Environment Protection Engineering, 38 (4), 127-138, DOI: 10.5277/EPE120411.
- Kotowski A., 2011a, Methodological basis for formulating models of dependable precipitations for measuring sewerage systems, (in Polish), Przegląd Geofizyczny, LVI (1-2), 45-97.
- Kotowski A., 2011b, The need to standardize the modeling for dimensioning storms sewers in Poland, (in Polish), Gaz Woda i Technika Sanitarna, 7/8, 260-266.
- Kotowski A., Kaźmierczak B., Dancewicz A., 2010, The modelling of precipitations for the dimensioning of sewage systems, (in Polish), Studia z Zakresu Inżynierii, 68, 170 pp.
- Kotowski A., Kaźmierczak B., Dancewicz A., 2011, Safe of sewage systems based on the local rainfall models, (in Polish), Czasopismo Techniczne. Środowisko, 1 (108), 85-99.
- Kupczyk E., Suligowski R., 1997, Statistical description of the precipitation time structure as an input element for hydrological models, (in Polish), [in:] Predykcja opadów i wezbrań o zadanym czasie powtarzalności, U. Soczyńska (ed.), University of Warsaw, Warsaw, 17-82.
- Lang M., Ouarda T.B., Bobee B., 1999, Towards operational guidelines for over-threshold modeling, Journal of Hydrology, 225 (3-4), 103-117, DOI: 10.1016/S0022-1694 (99)00167-5.
- Licznar P., 2005, A proposal of precipitation records processing for the needs of urban drainage systems’ design and exploitation, (in Polish), Woda-Środowisko-Obszary Wiejskie, 5, 197-207.
- Licznar P., 2008, Calculating frequency of precipitation sewage system damming up, (in Polish), Gaz, Woda i Technika Sanitarna, 7-8, 16-21.
- Licznar P., 2009, Synthetic rainfall time-series generators for needs of stormwater and combined sewage systems modelling, (in Polish), Uniwersytet Przyrodniczy, Wrocław, 180 pp.
- Miao O., Yang D., Yang H., Li Z., 2016, Establishing a rainfall threshold for flash flood warnings in China’s mountainous areas based on a distributed hydrological model, Journal of Hydrology, 541 (Part A), 371-386, DOI: 10.1016/j.jhydrol.2016.04.054.
- Muela S.B., Martín C.L., Sanz R.A., 2017, An application of extreme value theory in estimating liquidity risk, European Research on Management and Business Economics, 23 (3), 157-164, DOI: 10.1016/j.iedeen.2017.05.001.
- Nguyen T-H., Outayek S.E., Lim S.H., Nguyen V.-T.-V., 2017, A systematic approach to selecting the best probability models for annual maximum rainfalls - A case study using data in Ontario (Canada), Journal of Hydrology, 553, 49-58, DOI: 10.1016/j.jhydrol.2017.07.052.
- Norbiato D., Borga M., Esposti S.D., Gaume E., Anquetin S., 2008, Flash flood warning based on rainfall thresholds and soil moisture conditions: An assessment for gauged and ungauged basins, Journal of Hydrology, 362 (3-4), 274-290, DOI: 10.1016/j.jhydrol.2008.08.023.
- Re M., Barros V.R., 2009, Extreme rainfalls in SE South America, 2009, Climatic Change, 96 (1-2), 119-136, DOI: 10.1007/s10584-009-9619-x.
- Roth M., Buishand T.A., Jongbloed G., Klein Tank A.M.G., van Zanten J.H., 2014, Projections of precipitation extremes based on a regional, non-stationary peaks-over-threshold approach: A case study for the Netherlands and north-western Germany, Weather and Climate Extremes, 4, 1-10, DOI: 10.1016/j.wace.2014.01.001.
- Scarrott C., MacDonald A., 2012, A review of extreme value threshold estimation and uncertainty quantification, REVSTAT – Statistical Journal, 10 (1), 33-60.
- Suligowski R., 2004, Temporal and spatial structure of precipitation in Poland. Regionalization attempt, (in Polish), Prace Instytutu Geografii Akademii Świętokrzyskiej, Kielce, 116 pp.
- Towler E., Rajagopalan B., Gilleland E.R., Summers S., Yates D., Katz R.W., 2010, Modeling hydrologic and water quality extremes in a changing climate: A statistical approach based on extreme value theory, Water Resources Research, 46 (11), DOI: 10.1029/2009WR008876.
- Tramblay Y., Neppel L., Carreau J., Najib K., 2013, Non-stationary frequency analysis of heavy rainfall events in southern France, Hydrological Sciences Journal, 58 (2), 280-294, DOI: 10.1080/02626667.2012.754988.
- Wdowikowski M., Kaźmierczak B., Ledvinka O., 2016, Maximum daily rainfall analysis at selected meteorological stations in the upper Lusatian Neisse River basin, Meteorology Hydrology and Water Management - Research and Operational Applications, 4 (1), 53-63, DOI: 10.26491/ mhwm/63361.
- Węglarczyk S., 2013, On the correctness of the Chomicz equations for design rainfall calculations, (in Polish), Infrastruktura i Ekologia Terenów Wiejskich, 3 (IV), 305-323.
- WMO, 2011, Climate observations, stations and networks, [in:] Guide to climatological practices, WMO-No. 100, World Meteorological Organization, Geneva.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-eda6b661-6bd7-49fd-85e3-7f6e3c0337bc