PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

An optimal braking force distribution in the rigid drawbar trailers with tandem suspension

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Rigid drawbar agricultural trailers with laden weight of up to 13 tonnes have a single axle, up to 19 tonnes tandem axles. Carried out analysis of a tractor semi-mounted trailer combination showed that under ideal braking, the adhesion utilised by all axles and a coupling device are equal. By adopting the concept of treating the coupling device as a conventional front axle, the requirements of EU Directive 2015/68 for multi-axle trailers have been used to develop a new method for selecting the brake force distribution of semi-trailers with different suspensions. First, the forces acting on a single and tandem semi-trailer were analysed during braking. An algorithm based on the quasi-Monte Carlo method was then proposed to solve the constrained optimisation of the linear brake force distribution of semi-trailers equipped with ALB or MLB regulators. Finally, examples of MATLAB calculations were given for a 5 tonne single axle trailer and a 16-tonne trailer with 5 different tandem suspensions: bogie, two leaf spring, two leaf spring and rods, two leaf spring with dynamic equalisation and air spring. The results of the work are expected to provide a reference for the design and evaluation of the braking system of agricultural semi-trailers, especially with different types of tandem axles, to improve braking performance and reduce coupling forces.
Rocznik
Strony
94--105
Opis fizyczny
Bibliogr. 48 poz., rys., tab., wykr.
Twórcy
  • Faculty of Mechanical Engineering, Bialystok University of Technology, ul. Wiejska 45C, 15-351 Białystok, Poland
Bibliografia
  • 1. Revised standards for agricultural vehicles. RSA Guide. Road Safety Authority; 2015. Available from: https://www.rsa.ie/docs/default-source/road-safety/r1.6-agricultural-vehicles/revised-standards-for-agricultural-vehicles.pdf?Status=Master&sfvrsn=670b2fb7_5
  • 2. Gillmann R. Axle Spacing and Load Equivalency Factors. Transporta-tion Research Record 1998;(1655):227–232. https://doi.org/10.3141/1655-29.
  • 3. Harwood DW. Review of truck characteristics as factors in roadway design. The National Academies Press; 2003. https://doi.org/10.17226/23379
  • 4. Limpert R. Brake design and safety. SAE International, 2011. https://doi.org/10.4271/R-398
  • 5. Heisler H. Advanced vehicle technology. Elsevier, 2002. https://doi.org/10.1016/b978-0-7506-5131-8.x5000-3
  • 6. Nunney MJ. Light and heavy vehicle technology. Elsevier; 2007. https://doi.org/10.4324/9780080465753
  • 7. Van Straelen B. Lastverlagerung und Bremskraftverteilung bei Ein-achs- und Doppelachsanhängern. Grundlagen Der Landtechnik 1983; 33(6): 183–189.
  • 8. Commission Delegated Regulation (EU) 2015/68 of 15 October 2014 Supplementing Regulation (EU) No 167/2013 of the European Parlia-ment and of the Council with Regard to Vehicle Braking Requirements for the Approval of Agricultural and Forestry Vehicles.
  • 9. ECE Regulation No. 13. Uniform Provisions Concerning the Approval of Vehicles of Categories M, N and O with Regard to Braking. UN Eco-nomic Commission for Europe; Switzerland 2001.
  • 10. Radlinski R, Flick M. Tractor and trailer brake system compatibility. SAE Technical Paper 861942; 1986. https://doi.org/10.4271/861942
  • 11. Glišović J, Lukić J, Šušteršič V, Ćatić D. 2015. Development of tractors and trailers in accordance with the requirements of legal regulations. In: Proc. of 9th International Quality Conference. Kragujevac, Serbia 2015; 193–202.
  • 12. Nastasoiu M, Ispas N. Comparative analysis into the tractor-trailer braking dynamics: tractor with single axle brakes, tractor with all wheel brakes. Central European Journal of Engineering 2014; 4(2): 142–147. https://doi.org/10.2478/s13531-013-0155-0
  • 13. Janulevičius A, Giedra K. The evaluation of braking efficiency of tractor transport aggregate. Transport 2002; 17(4): 152-158. https://doi.org/10.3846/16483840.2002.10414033
  • 14. Aykan H, Çarman K, Canlı E, Ekinci Ş. Evaluation of tractor-trailer combination braking performance in different operating conditions. Journal of Natural and Applied Sciences. 2023; 27(2): 219-25.
  • 15. Abu-Hamdeh NH. Stability and computer simulation of trailed imple-ment under different operating conditions. Applied Mechanics and Ma-terials. 2016; 826 :61–5. https://doi.org/10.4028/www.scientific.net/amm.826.61
  • 16. Bădescu M, Iordache S, Ivancu B, Persu C, Bunduchi G, Epure M, Vlăduţ V. Theoretical study of the system of forces and moments act-ing on tractor-semitrailer aggregate, into rectilinear motion. Annals of the Faculty of Engineering Hunedoara - International Journal of Engi-neering 2014; 12(3): 221-228.
  • 17. Popescu S, Candea I, Csatlos C. Influence of the tractor and semi-trailer mass ratio on braking stability. Commission of Motorization and Power Industry in Agriculture 2004; 4: 7-13.
  • 18. Ogunjirin OA, Ogunlela AO. An appraisal of safety of tractor-trailer braking system. Nigerian Journal of Technological Development. 2011; 8(1): 10-22.
  • 19. Ciuperca R, Popa L, Nedelcu A, Borisov B, Atanasov A. Braking of trailer endowed with inertial braking system, working in aggregate with tractor. INMATEH Agricultural Engineering. 2010;32(3): 51-58.
  • 20. Ahokas J, Kosonen S. Dynamic behaviour of a tractor-trailer combina-tion during braking. Biosystems Engineering. 2002; 85(1): 29–39. https://doi.org/10.1016/S1537-5110(03)00035-7
  • 21. Dwyer MJ. The braking performance of tractor-trailer combina-tions. Journal of Agricultural Engineering Research. 1970; 15(2): 148–162. https://doi.org/10.1016/0021-8634(70)90086-7
  • 22. Pierce P. Controlled load transfer during braking on a four-spring trailer suspension. SAE Technical Paper 85234; 1985. https://doi.org/10.4271/852344
  • 23. Mital A, Desai A, Subramanian A, Mital A. Product development: A structured approach to consumer product development, design, and manufacture. Elsevier Science; 2014. https://doi.org/10.1016/B978-0-12-799945-6.00015-6
  • 24. Goodarzi A, Mehrmashhadi J, Esmailzadeh E. Optimised braking force distribution strategies for straight and curved braking. Interna-tional Journal of Heavy Vehicle Systems IJHVS. 2009; 16(1); 78-89. https://doi.org/10.1504/IJHVS.2009.023856
  • 25. Zhang N, Wu J, Li T, Zhao Z, Yin G. Influence of braking on dynamic stability of car-trailer combinations. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 2021; 235(2-3): 455-464. https://doi.org/10.1177/09544070209598
  • 26. Limpert R. An investigation of the brake force distribution on tractor-semitrailer combinations. SAE Technical Paper 710044; 1971. https://doi.org/10.4271/710044
  • 27. Nakazawa M, Isobe O, Takahashi S, Watanabe Y. Braking force dis-tribution control for improved vehicle dynamics and brake perfor-mance. Vehicle System Dynamics. 1995;24(4-5):413-426. https://doi.org/10.1080/00423119508969101
  • 28. Nakazawa M, Isobe O, Takahashi S, Watanabe Y. Braking force dis-tribution control for improved vehicle dynamics and brake perfor-mance. Vehicle System Dynamics. 1995;24(4-5):413-426. https://doi.org/10.1080/00423119508969101
  • 29. Zheng H, Liu Z, Xu W. Braking force distribution strategy for comfort of tractor and semi-trailer combination. In: Proc. of the 2012 Interna-tional Conference on Automobile and Traffic Science Materials, Met-allurgy Engineering. Wuhan China 2012; 0108-0112. https://doi.org/10.2991/mmat.2013.21
  • 30. Beyer C, Schramm H, Wrede J. Electronic braking System EBS - sta-tus and advanced functions. SAE Technical Paper 982781; 1998. https://doi.org/10.4271/982781
  • 31. Kamiński Z, Radzajewski P. Calculations of the optimal distribution of brake force in agricultural vehicles categories R3 and R4. Eksploat-acja i Niezawodność - Maintenance and Reliability. 2019; 21(4): 645–653. https://doi.org/10.17531/ein.2019.4.14
  • 32. Miatluk M, Kaminski Z. Brake Systems of Road Vehicles. Calculations. Wydawnictwo Politechniki Bialostockiej; 2005. Kamiński Z. Calculation of the optimal braking force distribution in three-axle trailers with tandem suspension. Acta Mechanica et Auto-matica. Sciendo. 2022;16(3):189-199. https://doi.org/10.2478/ama-2022-0023
  • 33. Tang G, Zhao H, Wu J, Zhang Y. Optimization of braking force distri-bution for three-axle Truck. SAE Technical Paper; 2013. https://doi.org/10.4271/2013-01-0414
  • 34. ISO 8855: 2011. Road vehicles - vehicle dynamics and road-holding ability - vocabulary.
  • 35. Bryant D, Day A. Braking of road vehicles. Elsevier; 2022. https://doi.org/10.1016/C2019-0-04185-4
  • 36. BPW. Agriculture equipment brochure; 2015. Available from: http://www.bpwtranspec.com.au/wp-content/up-loads/2013/03/BPW_Agriculture_Equipment_brochure.pdf
  • 37. Colaert Essieux. General catalogue; 2023. Available from: https://www.adraxles.com/gallery/catalogue-colaert-essieux-2023-v22-11-18-lr.pdf
  • 38. Titan agricultural catalogue – tires, wheels, tracks, axles; 2015. Avail-able from: http://titanaust.com.au/wp-content/uploads/2015/ 10/TITA0053-C1L3P2-Agricultural-Catalogue-COMPLETE_LR.pdf
  • 39. NHTSA Heavy duty vehicle brake research program: Report no. 1 ‒ Stopping capability of air braked vehicles. National Highway Traffic Safety Administration; 1985. Available from: https://books.google.pl/books?id=pfbZvgEACAAJ
  • 40. Pneumatic braking system. Agriculture and forestry. Product cata-logue. Wabco; 2017. Available from: https://www.wabco-customercen-tre.com/catalog/docs/8150100823.pdf
  • 41. BPW. Mechanical load-dependent brake force regulator. The unique solution for the requirements imposed by Regulation EU 2015/68. Available from: https://bpwagrar.comen/mlb/
  • 42. Dimov IT. Monte Carlo methods for applied scientists. World Scientific Publishing Co; 2007. https://doi.org/10.1142/2813
  • 43. Kroese DP, Taimre T, Botev ZI. Handbook of Monte Carlo meth-ods. John Wiley & Sons; 2011. https://doi.org/10.1002/9781118014967
  • 44. Morton DP, Popova E. Monte-Carlo simulations for stochastic optimi-zation. In: Encyclopedia of Optimization. Springer; 2001. https://doi.org/10.1007/0-306-48332-7_305
  • 45. Venkataraman P. Applied optimization with MATLAB program-ming. John Wiley & Sons, Inc.; 2009.
  • 46. Hammersley J.M. Monte Carlo methods for solving multivariable prob-lems. Annals of the New York Academy of Sciences. 1960; 86(3): 844-874. https://doi.org/10.1111/j.1749-6632.1960.tb42846.x
  • 47. Burkhardt J. Various software. MATLAB source codes. The Hammers-ley Quasi Monte Carlo (QMC) sequence 2020. Available from: https://people.sc.fsu.edu/~jburkardt/ m_src/hammersley/hamm ers-ley.html
  • 48. Wong TT, Luk WS, Heng PA. Sampling with Hammersley and Halton points. Journal of Graphics Tools. 2012; 2(2): 9-24. https://doi.org/10.1080/10867651.1997.10487471
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-eda69ee5-6898-4fd3-88f4-84e85194acb5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.