Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The aim of present work was to investigate microstructure and mechanical properties of 3D printed by selective laser melting (SLM) Co-Cr alloys, intended for additive manufacturing in dentistry. Methods: A scanning electron microscope (SEM), equipped with an integrated Energy-Dispersive X-Ray Spectroscopy (EDS) system was used for investigation of the surface morphology and elemental composition of the 3D-printed Co-Cr sample. The X-ray structural analysis of the 3D-printed Co-Cr sample was made with a Bruker D8 Advance powder X-ray diffractometer. An atomic force microscopy (AFM) was used to investigate the surface topography of the sample. Tensile test, a three-point bending test and nanoindentation experiments were conducted for investigation of mechanical properties of the 3D-printed Co-Cr sample. The influence of two different strain rates (1 mm/min and 60 mm/min) on the flexural strength was investigated as well. Results: Higher values of indentation hardness (6.76 GPa), tensile strength (1016 MPa), yield strength (636.5 MPa) and flexural strength (1908 and 1891 MPa) of the Co-Cr alloys produced with the use of selective laser melting have been obtained, compared to cast Co-Cr and Cr-Ni alloys. It was found that increasing the strain rate from 1 mm/min to 60 mm/min caused a proportional decrease in recorded flexural strength of ~0.9%. Conclusions: The obtained results showed that the laser-sintered Co-Cr alloy can fully replace the cast Co-Cr alloy in dentistry, regarding its good mechanics properties as well as the high precision of the final product.
Czasopismo
Rocznik
Tom
Strony
29--40
Opis fizyczny
Bibliogr. 50 poz., rys., tab., wykr.
Twórcy
autor
- Institute of Mechanics, Bulgarian Academy of Sciences, Bulgaria.
autor
- Faculty of Dental Medicine, Medical University of Sofia, Sofia, Bulgaria.
autor
- Institute of Metal Science, Equipment and Technologies with Hydro- and Aerodynamics Centre, “Acad. A. Balevski”, Bulgarian Academy of Sciences, Bulgaria.
autor
- 2 Faculty of Dental Medicine, Medical University of Sofia, Sofia, Bulgaria.
autor
- Faculty of Chemistry and Pharmacy, Sofia University, Sofia, Bulgaria.
Bibliografia
- [1] AL JABBARI Y.S., KOUTSOUKIS T., BARMPAGADAKI X., ZINELIS S., Metallurgical and interfacial characterization of PFM Co-Cr dental alloys fabricated via casting, milling or selective laser melting, Dent. Mater., 2014, 30, e79-e88.
- [2] AL-MOGHRABI D., SALAZAR F., PANDIS N., FLEMING P., Compliance with removable orthodontic appliances and adjuncts: A systematic review and meta-analysis, Am. J. Orthod. Dentofacial. Orthop., 2017, 152, 17–32.
- [3] BARAZANCHI A., Evaluation of 3D Printed and Soft Milled Cobalt Chromium Alloy for Prosthodontic Applications, PhD Thesis, University of Otago, New Zealand, 2018.
- [4] ÇAKMAK G., DONMEZ M.B., CUELLAR A.R., KAHVECI Ç., SCHIMMEL M., YILMAZ B., Additive or subtractive manufacturing of crown patterns used for pressing or casting: A trueness analysis, J. Dent., 2022, 124, 104221.
- [5] DIKOVA T., Properties of Co-Cr Dental Alloys Fabricated Using Additive Technologies, Chapter 5 in book “Biomaterials in Regenerative Medicine”, InTech, 2018, 141–159.
- [6] DOLGOV N.A., DIKOVA T., DZHENDOV D., PAVLOVA D., SIMOV M., Mechanical properties of dental Co-Cr alloys fabricated via casting and selective laser melting, Scientific Proceedings II International Scientific-Technical Conference “Innovations in Engineering”, 2016, 29–33.
- [7] ELSHAHAWY W.M., WATANABE I., KRAMER P., In vitro cytotoxicity evaluation of elemental ions released from different prosthodontic materials, Dent, Mater., 2009, 25, 1551–1555.
- [8] FARIA A.C., ROSA A.L., RODRIGUES R.C., RIBEIRO R.F., In vitro cytotoxicity of dental alloys and cpTi obtained by casting, J. Biomed. Mater. Res. B Appl. Biomater., 2008, 85, 504–508.
- [9] FU W., LIU S., JIAO J., XIE Z., HUANG X., LU Y., LIU H., HU S., ZUO E., KOU N., MA G., Wear Resistance and Biocompatibility of Co-Cr Dental Alloys Fabricated with CAST and SLM Techniques, Mater., 2022, 15, 3263.
- [10] GHISLANZONI L., NEGRINI S., Digital Lab Appliances: The Time Has Come, J. Clin. Orthod., 2020, 54, 562–569.
- [11] GRAF S., Clinical guidelines for direct printed metal orthodontic appliances, Semin. Orthod., 2018, 24, 461–469.
- [12] GRAF S., VASUDAVAN S., WILMES B., CAD/CAM Metallic Printing of a Skeletally Anchored Upper Molar Distalizer, J. Clin. Orthod., 2020, 54, 140–150.
- [13] HONG J.H., YEOH F.Y., Mechanical properties and corrosion resistance of cobalt-chrome alloy fabricated using additive manufacturing, Mater. Today: Proc., 2020, 29, 196–201.
- [14] HUANG H.H., Effect of chemical composition on the corrosion behavior of Ni-Cr-Mo dental casting alloys, J. Biomed. Mater. Res., 2002, 60,458–465.
- [15] https://www.bego.com/index.php?id=156&L=624
- [16] ISO 14577-1:2015. Metallic materials – Instrumented indentation test for hardness and materials parameters. Part 1: Test method
- [17] ISO 6892-1:2019. Metallic materials – Tensile testing. Part 1: Method of test at room temperature
- [18] ISO 7438:2020(en). Metallic materials – Bend test
- [19] KHAING M., FUH J., LU L., Direct metal laser sintering for rapid tooling: processing and characterisation of EOS parts, J. Mat. Proc. Techn., 2001, 113, 269–272.
- [20] KIM H.R., JANG S.-H., KIM Y.K., SON J.S., MIN B.K., KIM K.-H., KWON T.-Y., Microstructures and Mechanical Properties of Co-Cr Dental Alloys Fabricated by Three CAD/CAM-Based Processing Techniques, Mater., 2016, 9, 596.
- [21] KOLOKITHAA O., CHATZISTAVROU E., A Severe Reaction to Ni-Containing Orthodontic Appliances, Angle Orthod., 2009, 79, 186–192.
- [22] KONIECZNY B., SZCZESIO-WŁODARCZYK A., SOKOŁOWSKI J., BOCIONG K., Challenges of Co-Cr Alloy Additive Manufacturing Methods in Dentistry – The Current State of Knowledge (Systematic Review), Mater., 2020, 13, 3524.
- [23] KOUTSOUKIS T., ZINELIS S., ELIADES G., AL-WAZZAN K., RIFAIY M.A., AL JABBARI Y.S., Selective Laser Melting Technique of Co-Cr Dental Alloys: A Review of Structure and Properties and Comparative Analysis with Other Available Techniques, J. Prosthodont., 2015, 24, 303–312.
- [24] LIN H.-Y., BOWERS B., WOLAN J., CAI Z., BUMGARDNER J., Metallurgical, surface, and corrosion analysis of Ni–Cr dental casting alloys before and after porcelain firing, Dent. Mater., 2008, 24, 378–385.
- [25] LIU C., QIAO X., ZHANG S., MA W., WANG W., GE X., HU X., KANG W., LU H., Banded versus modified appliances for anchorage during maxillary protraction, J. Orofac. Orthop., 2020, 81, 172–182.
- [26] LOCH J., ŁUKASZCZYK A., AUGUSTYN-PIENIĄŻEK J., KRAWIEC H., Electrochemical Behaviour of Co-Cr and Ni-Cr Dental Alloys, SSP, 2015, 227, 451–454.
- [27] MAJERIC D., LAZIC V., MAJERIC P., MARKOVIC A., RUDOLF R., Investigation of CoCr Dental Alloy: Example from a Casting Workflow Standpoint, Cryst., 2021, 11, 849.
- [28] MERCIECA S., CONTI M., BUHAGIAR J., CAMILLERI J., Assessment of corrosion resistance of cast cobalt- and nickelchromium dental alloys in acidic environments, J. Appl. Biomat. Funct. Mat., 2018, 16, 47–54.
- [29] MUNIR K., BIESIEKIERSKI A., WEN C., LI Y., Selective laser melting in biomedical manufacturing (Chapter 7), [in:] Metallic Biomaterials Processing and Medical Device Manufacturing, Woodhead Publishing, 2020, 235–269.
- [30] NOBLE J., AHING S., KARAISKOS E., WILTSHIRE W., Nickel allergy and orthodontics, a review and report of two cases, Br. Dent. J., 2008, 204, 297–300.
- [31] ØILO M., NESSE H., LUNDBERG O., GJERDET N., Mechanical properties of cobalt-chromium 3-unit fixed dental prostheses fabricated by casting, milling, and additive manufacturing, J. Prosthet. Dent., 2018, 120, 156.e1–156.e7.
- [32] OLIVER W.C., PHARR G.M., An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments, J. Mater. Res., 1992, 7, 1564–1583.
- [33] OLIVIERI K., NEISSER M., DE SOUZA P., BOTTINO M., Mechanical properties and micro structural analysis of a NiCr alloy cast under different temperatures, Braz. J. Oral. Sci., 2004, 3, 414–419.
- [34] PAOLETTI I., CECCON L., The Evolution of 3D Printing in AEC: From Experimental to Consolidated Techniques (Chapter 3), [in:] “3D Printing”, InTechopen, 2018.
- [35] PAPADOPOULOS M., Orthodontic Treatment of the Class II Noncompliant Patient, Mosby Ltd, 2006
- [36] PIMENTA A., DINIZ M., PACIORNIK S., SAMPAIO C., DE MIRANDA M., PAOLUCCI-PIMENTA J., Mechanical and microstructural properties of a nickel-chromium alloy after casting process, RSBO, 2012, 9, 17–24.
- [37] PRESOTTO A., CORDEIRO J., PRESOTTO J., RANGEL E., DA CRUZ N., LANDERS R., BARÃO V., MESQUITA M., Feasibility of 3D printed Co-Cr alloy for dental prostheses applications, J. Alloys Compd, 2021, 862, 2021, 158171.
- [38] REVILLA-LEON M., MEYER M., OZCAN M., Metal additive manufacturing technologies: literature review of current status and prosthodontic applications, Int. J. Comput. Dent., 2019, 22, 55–67.
- [39] RODRIGUES A., MONINI A., GANDINI L., SANTOS-PINTO A., Rapid palatal expansion: a comparison of two appliances, Braz. Oral. Res., 2012, 26, 242–248.
- [40] SAINI J.S., DOWLING L., TRIMBLE D., SINGH D., Mechanical Properties of Selective Laser Melted CoCr Alloys: A Review, J. Mater. Eng. Perform., 2021, 30, 8700–8714.
- [41] SHEELA U., USHA P., JOSEPH M., MELO J., NAIR S., TRIPATH A., 3D printing in dental implants (Chapter 7), [in:] D. Thomas, D. Singh, 3D Printing in Medicine and Surgery, Woodhead Publishing Series in Biomaterials, 2021.
- [42] SURESH S., SUN C., TEKUMALLA S., ROSA V., MUI S., NAI L., WONG R., Mechanical properties and in vitro cytocompatibility of dense and porous Ti–6Al–4V ELI manufactured by selective laser melting technology for biomedical applications, J. Mech. Behav. Biomed. Mater, 2021, 123, 104712.
- [43] TANG Y., LOH H., WONG Y., FUH J., LU L., WANG X., Direct laser sintering of a copper-based alloy for creating threedimensional metal parts, J. Mat. Proc. Techn., 2003, 140, 368–372.
- [44] VAN NOORT R., The future of dental devices is digital, Dent. Mat., 2012, 28, 3–12.
- [45] VIDERŠČAK D., SCHAUPERL Z., ŠOLIĆ S., ĆATIĆ A., GODEC M., KOCIJAN A., PAULIN I., DONIK Č., Additively Manufactured Commercial Co-Cr Dental Alloys: Comparison of Microstructure and Mechanical Properties, Mater., 2021, 14, 7350.
- [46] WATAHA J.C., Alloys for prosthodontic restorations, J. Prosthet. Dent., 2002, 87, 351–363.
- [47] WEBB P., A review of rapid prototyping (RP) techniques in the medical and biomedical sector, J. Med. Eng. Techn., 2000, 24, 149–153.
- [48] WILLER J., ROSSBACH A., WEBER H.P., Computer-assisted milling of dental restorations using a new CAD/ CAM data acquisition system, J. Prosthet. Dent., 1998, 80, 346–353.
- [49] WILMES B., DE GABRIELE R., DALLATANA G., TARRAF N., LUDWIG B., “Bone first” principle with CAD/CAM insertion guides for mini-implant-assisted rapid palatal expansion, J. Clin. Orthod., 2022, 56, 158–166.
- [50] ZHIHONG C., YEZHEN L., ZHIYUAN G., ZHONGQIAO Y., XIAOXUE L., YIFENG R., WEIKUN F., JILIANG H., Comparison of the cytogenotoxicity induced by five different dental alloys using four in vitro assays, Dent. Mater. J., 2011, 30, 861–868.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ed9b59a4-517d-48a1-a605-8538ea064412