PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of initial molding parameters and natural moisture migration on biochar-based soil composite for thermal backfills applications

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Sustainable materials are essential for next generation infrastructures that not only improve their functionality but also have minimal impact on the environment. The application of biochar has been proposed for thermally active structures owing to its lower thermal conductivity (K) and unparalleled carbon stability in recent studies. This study investigates the applicability of the biochar-based soil composite (BbSC) at varying density states (1.1–1.3 Mg m−3), intending to substitute conventionally used granular materials in thermal backfills. The BbSC was prepared by amending the locally available soil with biochar varying from 5 to 15% by weight. The BbSC was prepared in the dry and wet states by varying the molding water content from 10 to 30% at the compaction stage of sample preparation. Later, the K and volumetric heat capacity (C) were examined. Moreover, underground granular backfills might interact with moisture due to groundwater movement and rainfall. Therefore, another set of BbSC samples was injected with water from the bottom to simulate a near-saturation state, and their thermal characteristics were compared. The experiments revealed that the decrease in the thermal conductivities of BbSC upon increment in biochar content is consistent with only up to 10% biochar content. Moreover, K of BbSC increases with the increase in moisture content. From the measured data, linear regression was performed along with the sensitivity analysis to quantify the relationship between thermal characteristics and the initial molding state (dry density, initial water content, and biochar content) for BbSC. The developed equations can be helpful for the geotechnical and environmental engineering community in designing the large-scale application of the BbSC for sustainable thermal backfills.
Czasopismo
Rocznik
Strony
2381--2399
Opis fizyczny
Bibliogr. 50 poz., rys., tab.
Twórcy
autor
  • Department of Civil Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
  • Department of Civil Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
  • Department of Civil Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
Bibliografia
  • 1. Abu-Hamdeh NH, Reeder RC (2000) Soil thermal conductivity effects of density, moisture, salt concentration, and organic matter. Soil Sci Soc Am J 64:1285–1290. https://doi.org/10.2136/sssaj2000.6441285x
  • 2. ASTM: D698-12 (2012) Standard test methods for laboratory compaction characteristics of soil using standard effort (12, 400 ft-lbf/ft 3 (600 kN-m/m3)) 1. ASTM Int West Conshohocken, PA United States 3:1–11.https://doi.org/10.1520/D0698-12E01.1
  • 3. ASTM D2487-17 (2011) Standard practice for classification of soils for engineering purposes (Unified Soil Classification System) (Technical report). ASTM International. ASTM Int West Conshohocken, PA United States 1–12. https://doi.org/10.1520/D2487-11
  • 4. ASTM D422-63 (2007) Standard test method for particle-size analysis of soils. ASTM Int West Conshohocken, PA United States D422-63:1–8. https://doi.org/10.1520/D0422-63R07E02.2
  • 5. ASTM D4318-10 (2010) Standard test methods for liquid limit, plastic limit, and plasticity index of soils. ASTM Int West Conshohocken, PA United States 04:1–14.https://doi.org/10.1520/D4318-17E01
  • 6. ASTM D854-14 (2014) D854—Standard test methods for specific gravity of soil solids by water pycnometer. 2458000:1–7. https://doi.org/10.1520/D0854-14.
  • 7. Blanco-Canqui H (2017) Biochar and soil physical properties. Soil Sci Soc Am J 81:687–711. https://doi.org/10.2136/sssaj2017.01.0017
  • 8. Burrell LD, Zehetner F, Rampazzo N et al (2016) Long-term effects of biochar on soil physical properties. Geoderma 282:96–102. https://doi.org/10.1016/j.geoderma.2016.07.019
  • 9. Chintala R, Mollinedo J, Schumacher TE et al (2014) Effect of biochar on chemical properties of acidic soil. Arch Agron Soil Sci 60:393–404. https://doi.org/10.1080/03650340.2013.789870
  • 10. Das O, Sarmah AK, Bhattacharyya D (2015) Structure-mechanics property relationship of waste derived biochars. Sci Total Environ 538:611–620. https://doi.org/10.1016/j.scitotenv.2015.08.07
  • 11. De Bhowmick G, Sarmah AK, Sen R (2018) Production and characterization of a value added biochar mix using seaweed, rice husk and pine sawdust: a parametric study. J Clean Prod 200:641–656. https://doi.org/10.1016/j.jclepro.2018.08.002
  • 12. Dec D, Dörner J, Horn R (2009) Effect of soil management on their thermal properties. J Soil Sci Plant Nutr 9:26–39. https://doi.org/10.4067/S0718-27912009000100003
  • 13. Gan L, Garg A, Wang H et al (2021) Influence of biochar amendment on stormwater management in green roofs: experiment with numerical investigation. Acta Geophys 69:2417–2426. https://doi.org/10.1007/s11600-021-00685-4
  • 14. Garg A, Huang H, Kushvaha V et al (2020) Mechanism of biochar soil pore–gas–water interaction: gas properties of biochar-amended sandy soil at different degrees of compaction using KNN modeling. Acta Geophys 68:207–217. https://doi.org/10.1007/s11600-019-00387-y
  • 15. Garg A, Wani I, Zhu H, Kushvaha V (2022) Exploring efficiency of biochar in enhancing water retention in soils with varying grain size distributions using ANN technique. Acta Geotech 17:1315–1326. https://doi.org/10.1007/s11440-021-01411-6
  • 16. Gupt CB, Bordoloi S, Sahoo RK, Sekharan S (2021) Mechanical performance and micro-structure of bentonite-fly ash and bentonite-sand mixes for landfill liner application. J Clean Prod 292:126033. https://doi.org/10.1016/j.jclepro.2021.126033
  • 17. Gupta S, Kua HW (2017) Factors determining the potential of biochar as a carbon capturing and sequestering construction material: critical review. J Mater Civ Eng. https://doi.org/10.1061/(asce)mt.1943-5533.0001924
  • 18. Hall M, Allinson D (2009) Assessing the effects of soil grading on the moisture content-dependent thermal conductivity of stabilised rammed earth materials. Appl Therm Eng 29:740–747. https://doi.org/10.1016/j.applthermaleng.2008.03.051
  • 19. Hanson JL, Edil TB, Yesiller N (2000) Thermal properties of high water content materials. ASTM SPEC TECH PUBL 1374:137–151
  • 20. Holtz RD, Kovacs WD, Sheahan TC (1981) An introduction to geotechnical engineering. Prentice-Hall Inc, Eaglewoods Cliff
  • 21. Howard AK (1996) Pipe bedding and backfill geotechnical training manual no. 7 Second Edition. In: United States Dep. Inter. Bur. Reclam. https://www.usbr.gov/tsc/techreferences/mands/mands-pdfs/pipebed.pdf
  • 22. Hussain MI, Shackleton RT, El-Keblawy A et al (2020) Invasive mesquite (Prosopis juliflora), an allergy and health challenge. Plants 9:1–12. https://doi.org/10.3390/plants9020141
  • 23. Jyoti Bora M, Bordoloi S, Kumar H et al (2021) Influence of biochar from animal and plant origin on the compressive strength characteristics of degraded landfill surface soils. Int J Damage Mech 30:484–501. https://doi.org/10.1177/1056789520925524
  • 24. KD2 Pro (2016) KD2 Pro thermal properties analyzer operator’s manual version 4. Decagon Devices, Pullman, WA KD2 Pro Therm Prop Anal Oper Man version 4
  • 25. Lehmann J, Joseph S (2015) Biochar for environmental management: science, technology and implementation. Routledge, New York
  • 26. Liu Z, Xu J, Li X, Wang J (2018) Mechanisms of biochar effects on thermal properties of red soil in south China. Geoderma 323:41–51. https://doi.org/10.1016/j.geoderma.2018.02.045
  • 27. Lu S, Ren T, Gong Y, Horton R (2007) An improved model for predicting soil thermal conductivity from water content at room temperature. Soil Sci Soc Am J 71:8–14. https://doi.org/10.2136/sssaj2006.0041
  • 28. Ocłoń P, Bittelli M, Cisek P et al (2016) The performance analysis of a new thermal backfill material for underground power cable system. Appl Therm Eng 108:233–250. https://doi.org/10.1016/j.applthermaleng.2016.07.102
  • 29. Olajire AA (2021) Review of wax deposition in subsea oil pipeline systems and mitigation technologies in the petroleum industry. Chem Eng J Adv 6:100104. https://doi.org/10.1016/j.ceja.2021.100104
  • 30. Park D, Seo Y (2018) A study on heat loss from offshore pipelines depending on the thermal conductivity of backfills and burial depth. J Adv Res Ocean Eng 4:1–6. https://doi.org/10.5574/JAROE.2018.4.1.001
  • 31. Patwa D, Chandra A, Ravi K, Sreedeep S (2021) Influence of biochar particle size fractions on thermal and mechanical properties of biochar-amended soil. J Mater Civ Eng 33:1–15. https://doi.org/10.1061/(asce)mt.1943-5533.0003915
  • 32. Patwa D, Bordoloi U, Dubey AA et al (2022a) Energy-efficient biochar production for thermal backfill applications. Sci Total Environ. https://doi.org/10.1016/j.scitotenv.2022.155253
  • 33. Patwa D, Muigai HH, Ravi K et al (2022b) A novel application of biochar produced from invasive weeds and industrial waste in thermal backfill for crude oil industries. Waste Biomass Valorization 13:3025–3042. https://doi.org/10.1007/s12649-022-01694-0
  • 34. Priyadharshini P, Ramamurthy K, Robinson RG (2019) Influence of temperature and duration of thermal treatment on properties of excavated soil as fine aggregate in cement mortar. J Mater Civ Eng. https://doi.org/10.1061/(asce)mt.1943-5533.0002759
  • 35. Reddy KR, Yaghoubi P, Yukselen-Aksoy Y (2015) Effects of biochar amendment on geotechnical properties of landfill cover soil. Waste Manag Res 33:524–532. https://doi.org/10.1177/0734242X15580192
  • 36. Sah PK, Sreedeep S (2014) Evaluation of bentonite-based thermal backfill materials. Environ Geotech 1:179–188. https://doi.org/10.1680/envgeo.13.00037
  • 37. Saraiva JP, Lima BS, Gomes VM, et al (2017) Calculation of sensitivity index using one-at-a-time measures based on graphical analysis. In: Proceedings of the 2017 18th international scientific conference on electric power engineering EPE 2017. https://doi.org/10.1109/EPE.2017.7967329
  • 38. Shackleton RT, Le Maitre DC, Van Wilgen BW, Richardson DM (2015) The impact of invasive alien Prosopis species (mesquite) on native plants in different environments in South Africa. S Afr J Bot 97:25–31. https://doi.org/10.1016/j.sajb.2014.12.008
  • 39. Singh H, Northup BK, Rice CW, Prasad PVV (2022) Biochar applications influence soil physical and chemical properties, microbial diversity, and crop productivity: a meta-analysis. Biochar 4:1–17. https://doi.org/10.1007/s42773-022-00138-1
  • 40. Tarnawski VR, Leong WH, Gori F et al (2002) Inter-particle contact heat transfer in soil systems at moderate temperatures. Int J Energy Res 26:1345–1358. https://doi.org/10.1002/er.853
  • 41. Tarnawski VR, McCombie ML, Momose T et al (2013) Thermal conductivity of standard sands. Part III. Full range of saturation. Int J Thermophys 34:1130–1147. https://doi.org/10.1007/s10765-013-1455-6
  • 42. Tong B, Kool D, Heitman JL et al (2020) Thermal property values of a central Iowa soil as functions of soil water content and bulk density or of soil air content. Eur J Soil Sci 71:169–178. https://doi.org/10.1111/ejss.12856
  • 43. Usowicz B, Lipiec J, Łukowski M et al (2016) The effect of biochar application on thermal properties and albedo of loess soil under grassland and fallow. Soil Tillage Res 164:45–51. https://doi.org/10.1016/j.still.2016.03.009
  • 44. Wang H, Garg A, Zhang X et al (2020) Utilization of coconut shell residual in green roof: hydraulic and thermal properties of expansive soil amended with biochar and fibre including theoretical model. Acta Geophys 68:1803–1819. https://doi.org/10.1007/s11600-020-00492-3
  • 45. Wani I, Narde SR, Huang X et al (2021a) Reviewing role of biochar in controlling soil erosion and considering future aspect of production using microwave pyrolysis process for the same. Biomass Convers Biorefin. https://doi.org/10.1007/s13399-021-02060-1
  • 46. Wani I, Ramola S, Garg A, Kushvaha V (2021b) Critical review of biochar applications in geoengineering infrastructure: moving beyond agricultural and environmental perspectives. Biomass Convers Biorefin. https://doi.org/10.1007/s13399-021-01346-8
  • 47. Wani I, Kushvaha V, Garg A et al (2022) Review on effect of biochar on soil strength: towards exploring usage of biochar in geo-engineering infrastructure. Springer, Berlin
  • 48. Zhang J, You C (2013) Water holding capacity and absorption properties of wood chars. Energy Fuels 27:2643–2648. https://doi.org/10.1021/ef4000769
  • 49. Zhang N, Yu X, Pradhan A, Puppala AJ (2017) A new generalized soil thermal conductivity model for sand–kaolin clay mixtures using thermo-time domain reflectometry probe test. Acta Geotech 12:739–752. https://doi.org/10.1007/s11440-016-0506-0
  • 50. Zhao J, Ren T, Zhang Q et al (2016) Effects of biochar amendment on soil thermal properties in the North China plain. Soil Sci Soc Am J 80:1157–1166. https://doi.org/10.2136/sssaj2016.01.0020
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ed9b206b-d4f1-4184-bfe8-868c18cd1910
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.