PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Structure and mechanical properties of dual-phase steel following heat treatment simulations reproducing a continuous annealing line

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the presented investigation, cold-rolled sheets of a selected dual-phase (DP) steel were heat-treated according to varying thermal profiles, thus reproducing continuous annealing process. Initially the samples were soaked at 780 and 810 °C for 0–60 s followed by water cooling. Next, samples were preliminary treated by applying the same conditions, however after water cooling these compositions were subject to tempering at 230, 380 and 460 °C for both 60 and 240 s. The characterization of the effect of heat-treatment parameters on the mechanical properties and structure is the main objective of this investigation. Mechanical properties of the samples after applied thermal profiles were in line with those requirements imposed on the commercial sheets of DP steels. The obtained results of the investigation showed that tempering deteriorates the Yield Ratio, defined as Rp0.2/Rm. This was caused by the martensite decomposition combined with carbide precipitation processes. Transmission electron microscopy observations revealed precipitated carbides, Fe3C in martensitic and M7C3 in ferritic areas. The quantitative results of the structural investigation were then applied to predict the Rp0.2 and Rm using the Perlade model. The results indicate that discrepancies between the measured tensile tests and calculated Rp0.2 and Rm do not exceed 10%.
Rocznik
Strony
453--468
Opis fizyczny
Bibliogr. 37 poz., rys., tab., wykr.
Twórcy
  • Instytut Metalurgii Zelaza im. St. Staszica, 12-14 Karola Miarki Street, 44-100 Gliwice, Poland
autor
  • Instytut Metalurgii Zelaza im. St. Staszica, 12-14 Karola Miarki Street, 44-100 Gliwice, Poland
  • Instytut Metalurgii Zelaza im. St. Staszica, 12-14 Karola Miarki Street, 44-100 Gliwice, Poland
Bibliografia
  • [1] N. Saeidi, F. Ashrafizadeh, B. Niroumand, F. Barlat, EBSD study of micromechanisms involved in high deformation ability of DP steels, Mater. Des. 87 (2015) 130–137.
  • [2] S. Zhou, K. Zhang, Y. Wang, J.F. Gu, Y.H. Rong, High strengthelongation product of Nb-microalloyed low-carbon steel by a novel quenching-partitioning-tempering process, Mater. Sci. Eng. A 528 (2011) 8006–8012.
  • [3] S. Sodjit, V. Uthaisangsuk, Microstructure based prediction of strain hardening behavior of dual phase steels, Mater. Des. 41 (2012) 370–379.
  • [4] A. Ramazani, A. Schwedt, A. Aretz, U. Prahl, W. Bleck, Characterization and modeling of failure initiation in DP steel, Comput. Mater. Sci. 75 (2013) 35–44.
  • [5] Q. Meng, J. Li, H. Zheng, High-efficiency fast-heating annealing of cold-rolled dual-phase steel, Mater. Des. 58 (2014) 194–197.
  • [6] F.G. Caballero, S. Allain, J. Cornide, J.D. Puerta Velasquez, C. Garcia-Mateo, M.K. Miller, Design of cold rolled and continuous annealed carbide-free bainitic steels for automotive application, Mater. Des. 49 (2013) 667–680.
  • [7] T.B. Hilditch, T. de Souza, P.D. Hodgson, Properties and automotive applications of advanced high-strength steels (AHSS), Weld. Joining Adv. High Strength Steels (AHSS) (2015) 9–28.
  • [8] R. Burdzik, L. Konieczny, Z. Stanik, P. Folega, A. Smalcerz, A. Lisiecki, Analysis of impact of chosen parameters on the wear of camshaft, Arch. Metall. Mater. 59 (2014) 957–963.
  • [9] Z. Gronostajski, P. Bandola, P. Karbowski, The effect of crashworthiness parameters on the behaviour of car-body elements, Arch. Civil Mech. Eng. 6 (2006) 31–46.
  • [10] L. Madej, L. Sieradzki, M. Sitko, K. Perzynski, K. Radwanski, R. Kuziak, Multi scale cellular automata and finite element based model for cold deformation and annealing of a ferriticpearlitic microstructure, Comput. Mater. Sci. 77 (2013) 172–181.
  • [11] K. Radwanski, Structural characterization of low-carbon multiphase steels merging advanced research methods with light optical microscopy, Arch. Civil Mech. Eng. 16 (2016) 282–293.
  • [12] R. Kuziak, R. Kawalla, S. Waengler, Advanced high strength steels for automotive industry, Arch. Civil Mech. Eng. 8 (2008) 103–117.
  • [13] M. Dziedzic, S. Turczyn, Experimental and numerical investigation of strip rolling from dual phase steel, Arch. Civil Mech. Eng. 10 (2010) 21–30.
  • [14] H. Hosseini-Toudeshky, B. Anbarlooie, J. Kadkhodapour, Microstructural deformation pattern and mechanical behavior analyses of DP600 dual phase steel, Mater. Sci. Eng. A 600 (2014) 108–121.
  • [15] K. Radwanski, A. Wrozyna, R. Kuziak, Role of the advanced microstructures characterization in modeling of mechanical properties of AHSS steels, Mater. Sci. Eng. A 639 (2015) 567–574.
  • [16] S. Keller, M. Kimchi, Advanced High-strength Steels Application Guidelines Version 5.0, World Auto Steel, 2014.
  • [17] M. Calcagnotto, Y. Adachi, D. Ponge, D. Raabe, Deformation and fracture mechanisms in fine- and ultrafine-grained ferrite/martensite dual-phase steels and the effect of aging, Acta Mater. 59 (2011) 658–670.
  • [18] M. Pietrzyk, R. Kuziak, K. Radwanski, D. Szeliga, Physical and numerical simulation of the continuous annealing of DP steel strips, Steel Res. Int. 85 (2014) 99–111.
  • [19] G. Rosenberg, I. Sinaiova, L. Juhar, Effect of microstructure on mechanical properties of dual phase steels in the presence of stress concentrators, Mater. Sci. Eng. A 582 (2013) 347–358.
  • [20] A. Ebrahimian, S.S. Ghasemi Banadkouki, Mutual mechanical effects of ferrite and martensite in a low alloy ferritemartensite dual phase steel, J. Alloys Compd. 708 (2017) 43–54.
  • [21] G.R. Speich, V.A. Demarest, R.L. Miller, Formation of austenite during intercritical annealing of dual phase–steels, Metall. Trans. A 12A (1981) 1419–1428.
  • [22] C. Halder, L. Madej, M. Pietrzyk, Discrete micro-scale cellular automata model for modelling phase transformation during heating of dual phase steels, Arch. Civil Mech. Eng. 14 (2014) 96–103.
  • [23] L. Madej, M. Sitko, K. Radwanski, R. Kuziak, Validation and predictions of coupled finite element and cellular automata model: influence of the degree of deformation on static recrystallization kinetics case study, Mater. Chem. Phys. 179 (2016) 282–294.
  • [24] A. Bahrami, S.H. Mousavi Anijdan, A. Ekrami, Prediction of mechanical properties of DP steels using neural network model, J. Alloys Compd. 392 (2005) 177–182.
  • [25] J. Szala, Instrukcja obslugi Met-Ilo, Repozytorium Publikacji Naukowych Politechniki Slaskiej (2004) 1–59. http://repolis.bg.polsl.pl/dlibra/doccontent?id=7579.
  • [26] K. Radwanski, Application of FEG-SEM and EBSD methods for the analysis of the restoration processes occurring during continuous annealing of dual-phase steel strips, Steel Res. Int. 86 (11) (2015) 1379–1390.
  • [27] R. Petrov, L. Kestens, A. Wasilkowska, Y. Houbaert, Mictrostructure and texture of a lightly deformed TRIPassisted steel characterized by means of the EBSD technique, Mater. Sci. Eng. A 447 (2007) 285–297.
  • [28] J. Wu, P.J. Wray, C.I. Garcia, M. Hua, A.J. Deardo, Image quality analysis: a new method of characterizing microstructures, ISIJ Int. 45 (2005) 254–262.
  • [29] S.I. Wright, M.M. Nowell, EBSD image quality mapping, Microsc. Microanal. 12 (2006) 72–84.
  • [30] A. Grajcar, Microstructure evolution of advanced high strength TRIP-aided bainitic steel, Mater. Tehnol. 49 (5) (2015) 715–720.
  • [31] A. Grajcar, K. Radwanski, Microstructural comparison of the thermomechanically treated and cold deformed Nbmicroalloyed TRIP steel, Mater. Tehnol. 48 (5) (2014) 679–683.
  • [32] J. Tarasiuk, Ph. Gerber, B. Bacroix, Estimation of recrystallized volume fraction from EBSD data, Acta Mater. 50 (2002) 1467–1477.
  • [33] A. Ramazani, K. Mukherjee, A. Schwedt, P. Goravanchi, U. Prahl,W. Bleck, Quantification of the effect of transformationinduced geometrically necessary dislocations on the flowcurve modelling of dual-phase steels, Int. J. Plast. 43 (2013) 128–152.
  • [34] M. Calcagnotto, D. Ponge, E. Demir, D. Raabe, Orientation gradients and geometrically necessary dislocations In ultrafine grained dual-phase steels studied by 2D and 3D EBSD, Mater. Sci. Eng. A 527 (2010) 2738–2746.
  • [35] A. Perlade, O. Bouaziz, Q. Furnemont, A physically based model for TRIP-aided carbon steels behaviour, Mater. Sci. Eng. A 356 (2003) 145–152.
  • [36] J.O. Andersson, T. Helander, L. Hoglund, P. Shi, B. Sundman, THERMO-CALC & DICTRA, computational tools for materiale science, Calphad 26 (2) (2002) 273–312.
  • [37] H.J. Rajek, Computer simulation of precipitation kinetics In solid metals and application to the complex power plant steel CB8, PhD thesis, Institute for Material Science, Welding and Forming, Graz University of Technology, 2005, pp. 1–165.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ed9aced0-a171-4157-b3c9-690ef8f8ecf7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.