PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The review of selected electrical energy storage techniques

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Przegląd wybranych metod magazynowania energii elektrycznej
Języki publikacji
EN
Abstrakty
EN
The article contains basic information about selected mechanical, electrical and electrochemical techniques of electrical energy storage. Due to the rising popularity of renewable resources, electrical energy storage systems will play more and more significant role in the power engineering, electronics, car manufacturing and other key areas. This situation leads to the need to raise awareness of electrical energy storage.
PL
W artykule zawarte zostały informacje na temat obecnego stanu rozwoju wybranych metod mechanicznych, elektrycznych i elektrochemicznych magazynowania energii elektrycznej. Ze względu na wzrost popularności odnawialnych źródeł energii, magazynowanie energii elektrycznej będzie odgrywało coraz ważniejszą rolę w elektroenergetyce, elektronice oraz innych kluczowych obszarach. Ta sytuacja prowadzi do potrzeby podnoszenia świadomości w zakresie magazynowania energii elektrycznej.
Rocznik
Strony
23--28
Opis fizyczny
Bibliogr. 45 poz., rys.
Twórcy
  • Lublin University of Technology
Bibliografia
  • [1] Amiryar M.E., Pullen K.R.: A Review of Flywheel Energy Storage System Technologies and Their Applications. Applied Sciences 7(3)/2017, 286, [DOI: 10.3390/app7030286].
  • [2] Béguin F.: Supercapacitors. Wiley-VCH, Weinheim 2013.
  • [3] Bender D.A.: Recommended Practices for the Safe Design and Operation of Flywheels, 2015.
  • [4] Boicea V.A.: Energy Storage Technologies: The Past and the Present. Proc. IEEE 102(11)/2014, 1777–1794, [DOI: 10.1109/JPROC.2014.2359545].
  • [5] Bolund B., Bernhoff H., Leijon M.: Flywheel energy and power storage systems Renewable and Sustainable Energy Reviews, 11(2), 2007, 235–258.
  • [6] Chang L.: Review on Distributed Energy Storage Systems for Utility Applications. CPSS Transactions on Power Electronics and Applications 2(4), 2017, 267–276. [DOI: 10.24295/CPSSTPEA.2017.00025].
  • [7] Chen H., Cong G., Lu Y.-C.: Recent progress in organic redox flow batteries: Active materials, electrolytes and membranes. Journal of Energy Chemistry 27(5)/2018, 1304–1325, [DOI: 10.1016/j.jechem.2018.02.009].
  • [8] Chudy A.: Nowoczesne technologie magazynowania energii elektrycznej. Praca magisterska, Katedra Sieci Elektrycznych i Zabezpieczeń, Politechnika Lubelska, Lublin 2018.
  • [9] Díaz-González F., Sumper A., Gomis-Bellmunt O., Villafáfila-Robles R.: A review of energy storage technologies for wind power applications. Renewable and Sustainable Energy Reviews 16(4)/2012, 2154–2171, [DOI: 10.1016/j.rser.2012.01.029].
  • [10] Farhadi M., Mohammed O.: Energy Storage Technologies for High-Power Applications. IEEE Transactions on Industry Applications 52(3)/2016, 1953–1961, [DOI:10.1109/TIA.2015.2511096].
  • [11] Gaede J., Rowlands I.H.: How ‘transformative’ is energy storage?: Insights from stakeholder perceptions in Ontario. Energy Research & Social Science 44/2018, 268–277, [DOI:10.1016/j.erss.2018.05.030].
  • [12] Hiksas M.M., Aninditio M.L.: Redox Flow Batteries for small scale energy storage. 2016 IEEE Conference on Technologies for Sustainability (SusTech), 2016, 134–139, [DOI:10.1109/SusTech.2016.7897155].
  • [13] Hu X., Zou C., Zhang C., Li Y.: Technological Developments in Batteries: A Survey of Principal Roles, Types, and Management Needs. IEEE Power and Energy Magazine 15(5)/2017, 20–31, [DOI:10.1109/MPE.2017.2708812].
  • [14] Huggins R.A.: Energy storage. Springer 2016.
  • [15] Janowski T.: Nadprzewodnikowe zasobniki energii. Liber Duo, Lublin 2007.
  • [16] Jarnut M., Wermiński S., Kaniewski J., Waśkowicz B.: Properties of smallscalle flow battery for prosumer-owned microgrid. IECON 2016 – 42nd Annual Conference of the IEEE Industrial Electronics Society, 2016, 6566–6571, [DOI:10.1109/IECON.2016.7794008].
  • [17] Letcher T.M.: Storing energy with special reference to renewable energy sources. Elsevier, Amsterdam 2016.
  • [18] Libich J., Máca J., Vondrák J., Čech O., Sedlaříková M.: Supercapacitors: Properties and applications. Journal of Energy Storage 17/2018, 224–227, [DOI:10.1016/j.est.2018.03.012].
  • [19] Luo X., Wang J., Dooner M., Clarke J.: Overview of current development in electrical energy storage technologies and the application potential in power system operation. Applied Energy 137/2015, 511–536, [DOI: 10.1016/j.apenergy.2014.09.081].
  • [20] Miller J.R.: Perspective on electrochemical capacitor energy storage. Applied Surface Science 460/2017, 3–7, [DOI: 10.1016/j.apsusc.2017.10.018].
  • [21] Moseley P.T., Garche J.: Electrochemical energy storage for renewable sources and grid balancing. Elsevier, Amsterdam 2015.
  • [22] Mousavi G.S.M., Faraji F., Majazi A., Al-Haddad K.: A comprehensive review of Flywheel Energy Storage System technology. Renewable and Sustainable Energy Reviews 67/2017, 477–490, [DOI:10.1016/j.rser.2016.09.060].
  • [23] Musbaudeen O.B., Saif A., Hong S.: Prospects of recently developed membraneless cell designs for redox flow batteries. Renewable and Sustainable Energy Reviews 70/2017, 506–518, [DOI: 10.1016/j.rser.2016.11.234].
  • [24] Peña-Alzola R., Sebastián R., Quesada J., Colmenar A.: Review of flywheel based energy storage systems. 2011 International Conference on Power Engineering, Energy and Electrical Drives, 1–6, 2011, [DOI: 10.1109/PowerEng.2011.6036455].
  • [25] Rufer A.: Energy storage. CRC Press, Taylor & Francis Group, Boca Raton 2018.
  • [26] RWE Power: ADELE Adiabatic Compressed-Air Energy Storage for Electricity Supply. RWE Power AG, Essen/Koln 2010.
  • [27] Schlunegger H.: Pumping efficiency-A 100 MW converter for the Grimsel 2 pumped storage plant, 2014. [04.10.2018].
  • [28] Weber A.Z., Mench M.M., Meyers J.P., Ross P.N., Gostick J.T., Liu Q.: Redox flow batteries. A review Journal of Applied Electrochemistry 41(10)/2011, 1137, [DOI: 10.1007/s10800-011-0348-2].
  • [29] Whitehead A.H., Rabbow T.J., Trampert M., Pokorny P.: Critical safety features of the vanadium redox flow battery. Journal of Power Sources 351/2017, 1–7, [DOI: 10.1016/j.jpowsour.2017.03.075].
  • [30] Yan J.: Handbook of Clean Energy Systems. John Wiley & Sons, Ltd, Chichester 2015.
  • [31] Yu A.: Electrochemical supercapacitors for energy storage and delivery. Taylor & Francis, Boca Raton 2013.
  • [32] Zohuri B.: Hybrid energy systems. Springer International Publishing, Cham 2018.
  • [33] www.energystoragesense.com/superconducting-magnetic-energy-storage-smes/ [05.10.2018].
  • [34] www.pgeeo.pl/Nasze-obiekty/Elektrownie-wodne/Zarnowiec. [05.10.2018].
  • [35] www.sierraclub.org/sierra/2015-5-september-october/innovate/how-storerenewable-energy-later#2 [05.10.2018].
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ed97531e-6b9e-4b7e-9354-02f950aaa0a3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.