Identyfikatory
Języki publikacji
Abstrakty
The classical sliding mode control (SMC) is a robust control scheme widely used for dealing with nonlinear systems uncertainties and disturbances. However, the conventional SMC major drawback in real applications is the chattering phenomenon problem, which involves extremely high control activity due to the switched control input. To overcome this handicap, a pratical design method that combines an adaptive neural network and sliding mode control principles is proposed in this paper. The controller design is divided into two phases. First, the chattering phenomenon is removed by replacing the sign function included in the switched control by a continuous smooth function; basing on Lyapounov stability theorem. Then, an adaptive linear neural network, that has the role of online estimate the equivalent control in the neighborhood of the sliding manifold, is developed when the controlled plant is poorly modeled. Simulation results show clearly the satisfactory chattering free tracking performance of proposed controller when it is applied for the joints angular positions control of a 6-DOF PUMA 560 robot arm.
Słowa kluczowe
Rocznik
Tom
Strony
8--16
Opis fizyczny
Bibliogr. 22 poz., rys.
Twórcy
autor
- Department of Mechanical Engineering, Skikda University, 21000, Algeria
autor
- Department of Electrical Engineering, Skikda University, 21000, Algeria
Bibliografia
- [1] Lee H., Nam D., Park C. H., ”A Sliding Mode Controller Using Neural Networks for Robot Manipulator”, ESANN’2004 Proceedings, Bruges (Belgium), April 28–30, 2004, 193–198.
- [2] Shafiei S. E., Soltanpour M. R., ”Neural Network Sliding-Mode-PID Controller Design for Electrically Driven Robot Manipulator”, International Journal of Innovative Computing, Information and Control, vol. 7, no. 2, 2011, 511–524.
- [3] Young K. D., Utkin V. I., Özgüner Ü., ”A Control Engineer’s Guide to Sliding Mode Control”, IEEE Transactions on Control Systems Technology, vol. 7, no. 3, 1999, 328–342. DOI: 10.1109/87.761053.
- [4] Ertugrul M., Kaynak O., Kerestecioglu F., ”Gain adaptation in sliding mode control of robotic manipulators”, International Journal of Systems Science, vol. 31, no. 9, 2000, 1099–1106.
- [5] Slotine J. J., ”The robust Control of Robot Manipulators”, The International Journal of Robotics Research, vol. 4, no. 2, 1985, 49–64. DOI: 10.1177/027836498500400205.
- [6] Le T. D., Kang H. J., Suh Y. S., ”Chattering-Free Neuro-Sliding Mode Control of 2-DOF Planar Parallel Manipulators”, International Journal of Advanced Robotic Systems, vol. 10, 2013, 1–15. DOI: 10.5772/55102.
- [7] Erbatur K., Kaynak O., ”Use of Adaptive Fuzzy Systems in Parameter Tuning of Sliding-Mode Controllers”, IEEE/ASME Transactions on Mechatronics, vol. 6, no. 4, 2001, 474–482. DOI: 10.1109/3516.974861.
- [8] Ha Q.P., Nguyen Q.H., Rye D.C., Durrant-Whyte H.F., ”Fuzzy Sliding-Mode Controllers with Applications”, IEEE Transactions on Industrial Electronics, vol. 48, no. 1, 2001, 38–46. DOI: 10.1109/41.904548.
- [9] X. Yu, Kaynak O., ”Sliding-Mode Control With Soft Computing: A Survey”, IEEE Transactions on Industrial Electronics, vol. 56, no. 9, 2009, 3275–3285. DOI: 10.1109/TIE.2009.2027531.
- [10] Sahamijoo A., F. Piltan, M. Mazloom, M. Avazpour, H. Ghiasi, N. Sulaiman, ”Methodologies of Chattering Attenuation in Sliding Mode Controller”, International Journal of Hybrid Information Technology, vol. 9, no. 2, 2016, 11–36. DOI: 10.14257/ijhit.2016.9.2.02.
- [11] Yildiz Y., Šabanovic A., K. Abidi, ”Sliding-Mode Neuro-Controller for Uncertain Systems”, IEEE Transactions on Industrial Electronics, vol. 54, no. 3, 2007, 1676–1685. DOI: 10.1109/TIE.2007.894719
- [12] S. W. Lin, Chen C. S., ”Robust adaptive sliding mode control using fuzzy modeling for a class of uncertain MIMO nonlinear systems”, IEE Proc. Control Theory Appl., vol. 149, no. 3, 2002, 193–201. DOI: 10. 1049/ip-cta:20020236
- [13] Hoang D. T., H. J. Kang, ” Fuzzy Neural Sliding Mode Control for Robot Manipulator”, Lecture Notes in Computer Science, vol. 9773, 2016, 541–550. DOI: 10.1007/978-3-319-42297-8_50.
- [14] Song S., Zhang X., Z. Tan, ”RBF Neural Network Based Sliding Mode Control of a Lower Limb Exoskeleton Suit”, Journal of Mechanical Engineering, vol. 60, no. 6, 2014, 437–446. DOI: 10.5545/sv-jme.2013.1366.
- [15] Huang K., Zuo S., ”Neural Network-based Sliding Mode Control for Permanent Magnet Synchronous Motor”, The Open Electrical & Electronic Engineering Journal, vol. 9, 2015, 314–320.
- [16] Namazil M. M., Rashidil A., S-Nejadl S. M., Ahn J.W., ”Chattering-Free Robust Adaptive Slidingmode Control for Switched Reluctance Motor Drive”, IEEE Transportation Electrification Conference and Expo, Asia Pacific (ITEC), June 1–4, 2016, Busan (Korea), 474–478.
- [17] Chu Y., Fei J., ” Adaptive Global Sliding Mode Control for MEMS Gyroscope Using RBF Neural Network”, Mathematical Problems in Engineering, vol. 2015, 1–9. DOI: 10.1155/2015/403180.
- [18] Armstrong B., Khatib O., Burdick J., ”The Explicit Dynamic Model and Inertial Parameters of the PUMA 560 Arm”, 1986 IEEE International Conference on Robotics and automation, San Francisco (USA) April 7–10, vol. 3, 1986, 510–518.
- [19] Mazhari S. A., Kumar S., ”PUMA 560 Optimal Trajectory Control using Genetic Algorithm, Simulated Annealing and Generalized Pattern Search Techniques”, World Academy of Science, Engineering and Technology, vol. 41, 2008, 800–809.
- [20] Kim K. J., Park J. B., Choi Y. H., ”Chattering Free Sliding Mode Control”, SICE-ICASE International Joint Conference, Busan (Korea) October 18–21, 2006, 732–735.
- [21] Corke P., ”Visual control of robots: high-performance visual servoing’’, Research Studies Press, 1996.
- [22] Biagiotti L., Melchiorri C., ”Trajectory Planning for Automatic Machines and Robots’’, Springer, 2008.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Identyfikator YADDA
bwmeta1.element.baztech-ed8e4db4-341a-47d0-96c4-3efab915bfbc