PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Identification of degradation by-products of selected pesticides during oxidation and chlorination processes

Autorzy
Identyfikatory
Warianty tytułu
PL
Identyfikacja ubocznych produktów rozkładu wybranych pestycydów w trakcie procesów utleniania i chlorowania
Języki publikacji
EN
Abstrakty
EN
Advanced oxidation processes (AOPs) are considered to be one of the most effective methods for the decomposition of a wide range of hardly-biodegradable organic compounds, including pesticides. The implementation of such processes in the water streams treatment often leads to the formation of decomposition by-products of micropollutants occurring in water. These compounds, even in concentrations of a few ng/dm3, may negatively affect the water quality. Therefore, there is a need for detailed analyses that will allow to identify intermediates found in the AOP solutions and to assess their impact on the aquatic environment. The paper presents an attempt to identify by-products of three pesticides: triclosan, triallat and oxadiazon during ozonation, chlorination and UV irradiation of their water solutions. The identification of compounds was performed based on the results of the GC-MS analysis using the NIST v17 mass spectral library. It has been shown that during all of tested advanced oxidation processes, incomplete degradation of pesticides occurs. The number of micropollutant decomposition by-products increases with the increase of the applied ozone dose and UV exposure time. During the chlorination process Cl atoms were added to the tested compound molecules. In the case of triclosan, it led to the generation of compounds containing four or five chlorine atoms in their structure. The toxicological analysis performed by the use of the Microtox® and Lemna sp. Growth Inhibition Test showed the toxic nature of post-process solutions. The decomposition by-products of triclosan and triallate, generated during the UV irradiation process, were highly toxic against the test organisms (toxic effect > 75 %). This makes it impossible to drain these solutions into the natural environment.
Rocznik
Strony
571--581
Opis fizyczny
Bibliogr. 22 poz., wykr., tab.
Twórcy
autor
  • Institute of Water and Wastewater Engineering, Silesian University of Technology, ul. S. Konarskiego 18, 44-100 Gliwice, Poland, phone +48 32 237 2478, fax +48 32 237 10 47
Bibliografia
  • [1] Sun R Luo X Li QX Wang T Zheng X Peng P et al. Sci Total Environ. 2018;616-617:38-45. DOI: 10.1016/j.scitotenv.2017.10.296.
  • [2] Tijani JO Fatoba OO Madzivire G Petrik LF. Water Air Soil Pollut. 2014;225:2102. DOI: 10.1007/s11270-014-2102-y.
  • [3] Reddy PVL Kim K-H. J Hazard Mater. 2015;285:325-335. DOI: 10.1016/j.jhazmat.2014.11.036.
  • [4] Hossain MS Alamgir Zaman Chowdhury M Kamruzzaman Pramanik Md Rahman MA Fakhruddin ANM Khorshed Alam M. Appl Water Sci. 2015;5:171-179. DOI: 10.1007/s13201-014-0178-6.
  • [5] Council Directive 98/83/EC of 3 November 1998 on the quality of water intended for human consumption. OJ L 330 5.12.1998:32. http://data.europa.eu/eli/dir/1998/83/2015-10-27.
  • [6] Albuquerque AF Ribeiro JS Kummrow F Nogueira AJ Montagner CC Umbuzeiro GA. Environ Sci Process Impacts. 2016;18:779-787. DOI: 10.1039/c6em00268d.
  • [7] Székács A Mörtl M Darvas B. J Chem. 2015:1-15. DOI: 10.1155/2015/717948.
  • [8] El Alfy M Faraj T. Environ Geochem Health. 2017;39:231-253. DOI: 10.1007/s10653-016-9825-1.
  • [9] Climent MJ Herrero-Hernández E Sánchez-Martín MJ Rodríguez-Cruz MS Pedreros P Urrutia R. Environ Pollut. 2019;251:90-101. DOI: 10.1016/j.envpol.2019.04.117.
  • [10] Hernández AF Parrón T Tsatsakis AM Requena M Alarcón R López-Guarnido O. Toxicology. 2013;307:136-145. DOI: 10.1016/j.tox.2012.06.009.
  • [11] Oturan MA Aaron J-J. Crit Rev Environ Sci Technol. 2014;44:2577-2641. DOI: 10.1080/10643389.2013.829765.
  • [12] Rahman M Kim TH Kwon GS Yang JE Park M Kim J-E. J Korean Soc. Appl. Biol Chem. 2009;52:252-257. DOI: 10.3839/jksabc.2009.045.
  • [13] Canosa P Morales S Rodríguez I Rubí E Cela R Gómez M. Anal Bioanal Chem. 2005;383:1119-1126. DOI: 10.1007/s00216-005-0116-4.
  • [14] Takanashi H Hama T Nakajima T Ohki A Kondo T Kameya T et al. J Water Environ Technol. 2014;12:25-32. DOI: 10.2965/jwet.2014.25.
  • [15] Kim S Thiessen PA Bolton EE Chen J Fu G Gindulyte A et al. Nucleic Acids Res. 2016;4:D1202-D1213. DOI: 10.1093/nar/gkv951.
  • [16] Kudlek E Dudziak M. Desalin Water Treat. 2018;117:88-100. DOI: 10.5004/dwt.2018.22096.
  • [17] Kudlek E. Water. 2018;10:955. DOI: 10.3390/w10070955.
  • [18] Mahugo Santana C Sosa Ferrera Z Torres Padron ME Santana Rodríguez JJ. Molecules. 2009;14:298-320. DOI: 10.3390/molecules14010298.
  • [19] Kumar Sharma A Kumar Tiwari R Singh Gaur M. Arabian J Chem. 2016;9:S1755-S1764. DOI: 10.1016/j.arabjc.2012.04.044.
  • [20] Gafar Muhamad S. Arabian J Chem. 2010;3(2):127-133. DOI: 10.1016/j.arabjc.2010.02.009.
  • [21] U.S. National Library of Medicine TOXNET Toxicology Data Network. https://toxnet.nlm.nih.gov/cgi-bin/sis/search2/r?dbs+hsdb:@term+@rn+@rel+2303-16-4.
  • [22] Jin X Peldszus S Huck PM. Water Res. 2012;46:6519-6530. DOI: 10.1016/j.watres.2012.09.026.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ed89f06e-009b-40ec-a462-da9a0036c451
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.