Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The four-wave-mixing (FWM) noises are modeled when walk-off and intersymbol interference (ISI) are taken into account for any centrosymmetric constellation shaped signal in orthogonal frequency-division multiplexed (OFDM) with phase-conjugated twin waves (PCTW) scheme. Bit error rate (BER) and the equivalent Q-factor for any constellation shaped signal are also modeled when the FWM and amplified spontaneous emission (ASE) noises are taken into account as additive white Gaussian noise. By using the newly derived semi-analytic models, example calculations are carried out for 16-ary signal in PCTW OFDM system with four cases classified according to some proposed constellation shaping schemes adopted or not. A hybrid constellation shaping scheme consisted of Huffman-coded probabilistic shaping and radius-optimized geometric shaping is proposed. The performance gain in terms of the equivalent Q-factor is calculated to be about 0.563 dB for 16-ary signal in PCTW OFDM system with the proposed hybrid constellation shaping scheme over the square conventional 16QAM signal. The performance degradation for such system due to the effects of ISI on the FWM noise is also evaluated by using the semi-analytic calculation models.
Czasopismo
Rocznik
Tom
Strony
163--178
Opis fizyczny
Bibliogr. 28 poz., rys., tab.
Twórcy
autor
- College of Electronic and Optical Engineering & College of Flexible Electronics (Futrue Technology), Nanjing University of Posts & Telecommunication, Nanjing, China
autor
- College of Electronic and Optical Engineering & College of Flexible Electronics (Futrue Technology), Nanjing University of Posts & Telecommunication, Nanjing, China
autor
- College of Electronic and Optical Engineering & College of Flexible Electronics (Futrue Technology), Nanjing University of Posts & Telecommunication, Nanjing, China
Bibliografia
- [1] SHIEH W., ATHAUDAGE C., Coherent optical orthogonal frequency division multiplexing, Electronics Letters 42(10), 2006: 587-588. https://doi.org/10.1049/el:20060561
- [2] PECHENKIN V., FAIR I.J., On four-wave mixing suppression in dispersion-managed fiber-optic OFDM systems with an optical phase conjugation module, Journal of Lightwave Technology 29(11), 2011: 1678-1691. https://doi.org/10.1109/JLT.2011.2138677
- [3] BOSCO G., CANO I.N., POGGIOLINI P., LI L., CHEN M., MLSE-based DQPSK transmission in 43 Gb/s DWDM long-haul dispersion-managed optical systems, Journal of Lightwave Technology 28(10), 2010: 1573-1581. https://doi.org/10.1109/JLT.2010.2046475
- [4] SONG H., BRANDT-PEARCE M., Model-centric nonlinear equalizer for coherent long-haul fiber-optic communication systems, [In] 2013 IEEE Global Communications Conference (GLOBECOM), Atlanta, GA, USA, 2013: 2394-2399. https://doi.org/10.1109/GLOCOM.2013.6831432
- [5] IP E., Nonlinear compensation using backpropagation for polarization-multiplexed transmission, Journal of Lightwave Technology 28(6), 2010: 939-951. https://doi.org/10.1109/JLT.2010.2040135
- [6] LIU X., CHRAPLYVY A.R., WINZER P.J., TKACH R.W., CHANDRASEKHAR S., Phase-conjugated twin waves for communication beyond the Kerr nonlinearity limit, Nature Photonics 7(7), 2013: 560-568. https://doi.org/10.1038/nphoton.2013.109
- [7] LIU X., CHANDRASEKHAR S., WINZER P.J., TKACH R.W., CHRAPLYVY A.R., Fiber-nonlinearity-tolerant superchannel transmission via nonlinear noise squeezing and generalized phase-conjugated twin waves, Journal of Lightwave Technology 32(4), 2014: 766-775. https://doi.org/10.1109/ JLT.2013.2280998
- [8] ELIASSON H., JOHANNISSON P., KARLSSON M., ANDREKSON P.A., Mitigation of nonlinearities using conjugate data repetition, Optics Express 23(3), 2015: 2392-2402. https://doi.org/10.1364/OE.23.002392
- [9] LIU X., Twin-wave-based optical transmission with enhanced linear and nonlinear performances, Journal of Lightwave Technology 33(5), 2015: 1037-1043. https://doi.org/10.1109/JLT.2014.2383317
- [10] TAVARES J.S., PESSOA L.M., SALGADO H.M., Nonlinear compensation assessment in few-mode fibers via phase-conjugated twin waves, Journal of Lightwave Technology 35(18), 2017: 4072-4078. https://doi.org/10.1109/JLT.2017.2726758
- [11] YOSHIDA T., SUGIHARA T., ISHIDA K., MIZUOCHI T., Spectrally-efficient dual phase-conjugate twin waves with orthogonally multiplexed quadrature pulse-shaped signals, [In] OFC 2014, San Francisco, CA, USA, 2014: 1-3. https://doi.org/10.1364/OFC.2014.M3C.6
- [12] MATSUMINE T., YANKOV M.P., FORCHHAMMER S., Geometric constellation shaping for concatenated two-level multi-level codes, Journal of Lightwave Technology 40(16), 2022: 5557-5566. https:// doi.org/10.1109/JLT.2022.3179529
- [13] SILLEKENS E., LIGA G., LAVERY D., BAYVEL P., KILLEY R.I., High-cardinality geometrical constellation shaping for the nonlinear fibre channel, Journal of Lightwave Technology 40(19), 2022: 6374-6387. https://doi.org/10.1109/JLT.2022.3197366
- [14] FEHENBERGER T., ALVARADO A., BOCHERER G., HANIK N., On probabilistic shaping of quadrature amplitude modulation for the nonlinear fiber channel, Journal of Lightwave Technology 34(21), 2016: 5063-5073. https://doi.org/10.1109/JLT.2016.2594271
- [15] FU M., LIU Q., XU Y., JIANG H., ZENG X., WU Y., YI L., HU W., ZHUGE Q., Multi-dimensional distribution matching with bit-level shaping for probabilistically shaped high order modulation formats, Journal of Lightwave Technology 40(9), 2022: 2870-2879. https://doi.org/10.1109/ JLT.2022.3145621
- [16] NAZARATHY M., KHURGIN J., WEIDENFELD R., MEIMAN Y., CHO P., NOE R., SHPANTZER I., KARAGODSKY V., Phased-array cancellation of nonlinear FWM in coherent OFDM dispersive multi-span links, Optics Express 16(20), 2008: 15777-15810. https://doi.org/10.1364/OE.16.015777
- [17] CHEN X., SHIEH W., Closed-form expressions for nonlinear transmission performance of densely spaced coherent optical OFDM systems, Optics Express 18(18), 2010: 19039-19054. https://doi.org/ 10.1364/OE.18.019039
- [18] LOWERY A.J., DU L.B.Y., XPM efficiency versus symbol rate, Journal of Lightwave Technology 40(9), 2022: 2850-2861. https://doi.org/10.1109/JLT.2022.3148414
- [19] SINKIN O.V., HOLZLOHNER R., ZWECK J., MENYUK C.R., Optimization of the split-step Fourier method in modeling optical-fiber communications systems, Journal of Lightwave Technology 21(1), 2003: 61-68. https://doi.org/10.1109/JLT.2003.808628
- [20] KUMAR S., Analysis of degenerate four-wave-mixing noise in return-to-zero optical transmission systems including walk-off, Journal of Lightwave Technology 23(1), 2005: 310-320. https://doi.org/ 10.1109/JLT.2004.835742
- [21] DU J., Bit-pattern-dependent non-degenerate four-wave-mixing crosstalk in dispersion managed DWDM systems including walk-off, Optics Communications 282(14), 2009: 2983-2989. https:// doi.org/10.1016/j.optcom.2009.04.019
- [22] DU J., Four-wave mixing noise in dispersion managed DWDM system including effect of randomly varying birefringence strength and orientation along fiber, Optical Fiber Technology 19(2), 2013: 109–114. https://doi.org/10.1016/j.yofte.2012.11.008
- [23] AKHTAR A., PAVEL L., KUMAR S., Modeling interchannel FWM with walk-off in RZ-DPSK single span links, Journal of Lightwave Technology 26(14), 2008: 2142-2154. https://doi.org/10.1109/ JLT.2008.920127
- [24] DU J., TENG Z., SHEN N., Semi-analytic modeling of FWM noise in dispersion-managed DWDM systems with DQPSK/DPSK/OOK channels, Optics Communications 358, 2016: 180-189. https:// doi.org/10.1016/j.optcom.2015.07.052
- [25] DU J., SHEN N., XU Y., Modeling interchannel four-wave mixing for 8-Ary modulated dense wavelength division multiplexing systems over dispersion map, Optical Engineering 55, 2016: 086111. https://doi.org/10.1117/1.OE.55.8.086111
- [26] DU J., WANG Z., WU J., Semi-analytic modeling of FWM noise in QAM Nyquist-WDM system with phase-conjugated twin waves, Optics Communications 428, 2018: 169-175. https://doi.org/10.1016/ j.optcom.2018.07.049
- [27] DU J., WU J., MIAO T., Modeling inter-subcarrier four-wave mixing noises in QAM coherent OFDM system using phase-conjugated twin waves with diversity implement domains, Optics Communications 450, 2019: 261-268. https://doi.org/10.1016/j.optcom.2019.05.066
- [28] POGGIOLINI P., BOSCO G., CARENA A., CURRI V., JIANG Y., FORGHIERI F., The GN-model of fiber nonlinear propagation and its applications, Journal of Lightwave Technology 32(4), 2014: 694-721. https://doi.org/10.1109/JLT.2013.2295208
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ed866a29-9f31-4ec6-aa3a-48ca2c261cf9