PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

A comparison between profile and areal surface roughness parameters

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Surface roughness has an important influence on the service performance and life of parts. Areal surface roughness has the advantage of accurately and comprehensively characterizing surface microtopography. Understanding the relationship and distinction between profile and areal surface roughness is conducive to deepening the study of areal surface roughness and improving its application. In this paper, the concepts, development, and applications of surface roughness in the profile and the areal are summarized from the aspect of evaluation parameters. The relationships and differences between surface roughness in the profile and the areal are analyzed for each aspect, and future development trends are identified.
Rocznik
Strony
413--438
Opis fizyczny
Bibliogr. 115 poz., rys., tab., wzory
Twórcy
autor
  • Beijing University of Technology, Faculty of Materials and Manufacturing, Beijing Engineering Research Center of Precision Measurement Technology and Instruments, 100 Ping Le Yuan, Chaoyang District, Beijing 100124, China
autor
  • Beijing University of Technology, Faculty of Materials and Manufacturing, Beijing Engineering Research Center of Precision Measurement Technology and Instruments, 100 Ping Le Yuan, Chaoyang District, Beijing 100124, China
autor
  • Beijing University of Technology, Faculty of Materials and Manufacturing, Beijing Engineering Research Center of Precision Measurement Technology and Instruments, 100 Ping Le Yuan, Chaoyang District, Beijing 100124, China
Bibliografia
  • [1] Whitehouse, D. J. (1997). Surface metrology. Measurement Science and Technology, 8(9), 955. https://doi.org/10.1088/0957-0233/8/9/002
  • [2] Abbott, E. J. & Firestone, F. A. (1933). Specifying Surface Quality. A Method Based on Accurate Measurement and Comparison. Journal of Mechanical Engineering, 55, 569-572.
  • [3] Schmaltz, G. (1936). Oberflächenbeschaffenheit und Passungen: II. Mitteilung PreBsits. Journal of the Japan Society of Precision Engineering, 4, 268-276.
  • [4] Leach, R. K. (2014). Fundamental principles of engineering nanometrology (2nd ed.). Amsterdam: Elsevier. https://doi.org/10.1016/C2012-0-06010-3
  • [5] Williamson, J. B. P. (1967). Microtopography of surfaces. Proceedings of the Institution of Mechanical Engineers, Conference Proceedings. England, 182(11), 21-30. https://doi.org/10.1243/PIME_CONF_1967_182_300_02
  • [6] Nayak, P. R. (1971). Random process model of rough surfaces. Journal of Lubrication Technology, 93(3), 398-407. https://doi.org/10.1115/1.3451608
  • [7] Sayles, R. S., Thomas, T. R., Anderson, J., Haslock, I., & Unsworth, A. (1979). Measurement of the surface microgeometry of articular cartilage. Journal of Biomechanics, 12(4), 257-267. https://doi.org/10.1016/0021-9290(79)90068-x
  • [8] De Chiffre, L., & Nielsen, H. S. (1987). A digital system for surface roughness analysis of plane and cylindrical parts. Precision Engineering, 9(2), 59-64. https://doi.org/10.1016/0141-6359(87)90054-7
  • [9] Thomas, T. R. (2009). Kenneth J. Stout 1941-2006: A memorial. Wear, 266(5-6), 490-497. https://doi.org/10.1016/j.wear.2008.04.053
  • [10] Mainsah, E., & Stout, K. J. (1993). Second international workshop on the development of methods for the characterization of roughness in 3-D. Precision Engineering, 15(4), 287-288. https://doi.org/10.1016/0141-6359(93)90112-n
  • [11] E.C. Contract No SMT4-CT98-22561 (1998). The development of a basis for three-dimensional surface roughness standards.
  • [12] Blateyron F. (2013) The Areal Feature Parameters. In: R. Leach (Eds.), Characterisation of Areal Surface Texture (pp. 45-64). Springer. https://doi.org/10.1007/978-3-642-36458-7_3
  • [13] Blunt, L., & Jiang, X. (2003). Advanced Techniques for Assessment Surface Topography. Kogan Page. https://doi.org/10.1016/B978-1-903996-11-9-50015-3
  • [14] Jiang, X, Scott, P. J., & Whitehouse, D. J. (2003). Paradigm Shifts in Surface Metrology. Part II. The Current Shift. Proceedings of the Royal Society A. Mathematical Physical & Engineering Sciences, 463(2085), 2071-2099. https://doi.org/doi.org/10.1098/rspa.2007.1873
  • [15] International Organization for Standardization. (2011). Geometrical Product Specification (GPS) Filtration - Part 21: Linear profile filters: Gaussian filters (ISO Standard No. 16610-21:2011). https://www.iso.org/standard/50176.html
  • [16] International Organization for Standardization. (2016). Geometrical product specifications (GPS) Filtration - Part 31: Robust profile filters: Gaussian regression filters (ISO Standard No. 16610-31:2016). https://www.iso.org/standard/66242.html
  • [17] International Organization for Standardization. (2012). Geometrical Product Specifications (GPS) Surface texture: Areal - Part 3: Specification operators (ISO Standard No. 25178-3:2012). https://www.iso.org/standard/42895.html
  • [18] Leach, R. K. (2003). The measurement of surface texture using stylus instruments. Good Practice Guide No. 37 - National Physical Laboratory. [19] Gadelmawla, E. S., Koura, M. M., Maksoud, T. M., Elewa, I. M., & Soliman, H. H. (2002). Roughness parameters. Journal of Materials Processing Technology, 123(1), 133-145. https://doi.org/10.1016/s0924-0136(02)00060-2
  • [20] Pawlus, P., Reizer, R., & Wieczorowski, M. (2020). Characterization of the shape of height distribution of two-process profile. Measurement, 153, 107387. https://doi.org/10.1016/j.measurement.2019.107387
  • [21] Yaeger,J. R. D. (2002). Rampwear anddebrisfrom load/unloadlift-tab roughness.IEEETransactions on Magnetics, 38(5), 2126-2128. https://doi.org/10.1109/tmag.2002.802695
  • [22] Simon, L. B., Khobaib, M., & Matikas, T. E. (1999). Influence of pitting corrosion on structural integrity of aluminum alloys. Nondestructive Evaluation of Aging Materials and Composites III. International Society for Optics and Photonics, 3585, 40-47. https://doi.org/10.1117/12.339861
  • [23] Fujimura, N., Nakamura, T., Oguma, H. (2013). Application of surface roughness parameters to the evaluation of low cycle fatigue damage in austenitic stainless steel. ASME 2013 Pressure Vessels and Piping Conference. American Society of Mechanical Engineers. Digital Collection. https://doi.org/10.1115/pvp2013-97887
  • [24] Tsukamoto, N. (1984). Investigation about Load Capacity of Nylon Gears, when Tooth Surface Finishing of Mating Steel Gears is different: 2nd Report; Abrasion of Nylon Gear Meshing with GroundSteel Gear. Bulletin of JSME, 27(229), 1529-1536. https://doi.org/10.1299/jsme1958.27.1529
  • [25] Kopeliovich, D. (2011). Geometry and dimensional tolerances of engine bearings. Engine professional, AERA, 70-76.
  • [26] Ochi, M., Gotou, H., Okuno, H., & Taketomi, Y. (2009). Electrode of aluminum-alloy film with low contact resistance, method for production thereof, and display unit (U.S. Patent No. 12/136,409).
  • [27] Eriksson, R., Sjöström, S., Brodin, H., Johansson, S., Östergren, L., & Li, X. H. (2013). TBC bond coat-top coat interface roughness: Influence on fatigue life and modelling aspects. Surface and Coatings Technology, 236, 230-238. https://doi.org/10.1016/j.surfcoat.2013.09.051
  • [28] Frost, F., Schindler, A., & Bigl, F. (1998). Ion beam smoothing of indium-containing III-V compound semiconductors. Applied Physics A, 66(6), 663-668. https://doi.org/10.1007/s003390050730
  • [29] Kumar, S., Batish, A., Singh, R., & Singh, T. P. (2014). A hybrid Taguchi-artificial neural network approach to predict surface roughness during electric discharge machining of titanium alloys. Journal of Mechanical Science and Technology, 28(7), 2831-2844. https://doi.org/10.1007/s12206-014-0637-x
  • [30] Stout, K. J., & Spedding, T. A. (1982). The characterization of internal combustion engine bores. Wear, 83(2), 311-326. https://doi.org/10.1016/0043-1648(82)90186-7
  • [31] Lochynski, P., Kowalski, M., Szczygiel, B., & Kuczewski, K. (2016). Improvement of the stainless-steel electropolishing process by organic additives. Polish Journal of Chemical Technology, 18(4), 76-81. https://doi.org/10.1515/pjct-2016-0074
  • [32] Boscher, N. D., Vaché, V., Carminati, P., Grysan, P., & Choquet, P. (2014). A simple and scalable approach towards the preparation of superhydrophobic surfaces - importance of the surface roughness skewness. Journal of Materials Chemistry A, 2(16), 5744-5750. https://doi.org/10.1039/c4ta00366g
  • [33] García-Jurado, D., Vazquez-Martinez, J. M., Gámez, A. J., Batista, M., Puerta, F. J., & Marcos, M. (2015). FVM based study of the Influence of Secondary Adhesion Tool Wear on Surface Roughness of Dry Turned Al-Cu Aerospace Alloy. Procedia Engineering, 132, 600-607. https://doi.org/10.1016/j.proeng.2015.12.537
  • [34] Grzesik, W., & Brol, S. (2009). Wavelet and fractal approach to surface roughness characterization after finish turning of different workpiece materials. Journal of Materials Processing Technology, 209(5), 2522-2531. https://doi.org/10.1016/j.jmatprotec.2008.06.009
  • [35] Wieland, M., Textor, M., Spencer, N. D., & Brunette, D. M. (2001). Wavelength-dependent roughness: A quantitative approach to characterizing the topography of rough titanium surfaces. International Journal of Oral & Maxillofacial Implants, 16(2).
  • [36] Wu, J., Dong, J., Wang, Y., & Gond, B. K. (2017). Thermal oxidation ageing effects on silicone rubber sealing performance. Polymer Degradation and Stability, 135, 43-53. https://doi.org/10.1016/j.polymdegradstab.2016.11.017
  • [37] Matsumoto, R., Kai, N., Tomita, Y., Kajioka, A., Mori, S., & Utsunomiya, H. (2017). Characterization of surface profile of shot peened cemented tungsten carbide dies with micro valleys and their lubrication performance in cold forging. Procedia Engineering, 207, 1135-1140. https://doi.org/10.1016/j.proeng.2017.10.1138
  • [38] Brackbill, T. P., & Kandlikar, S. G. (2006). Effect of triangular roughness elements on pressure drop and laminar-turbulent transition in microchannels and minichannels. ASME 4th International Conference on Nanochannels, Microchannels, and Minichannels. American Society of Mechanical Engineers Digital Collection, 47608, 747-755. https://doi.org/10.1115/icnmm2006-96062
  • [39] Gualtieri, E., Pugno, N., Rota, A., Spagni, A., Lepore, E., & Valeri, S. (2011). Role of roughness parameters on the tribology of randomly nano-textured silicon surface. Journal of Nanoscience and Nanotechnology, 11(10), 9244-9250. https://doi.org/10.1166/jnn.2011.4296
  • [40] Cabanettes, F., & Rosén, B. G. (2014). Topography changes observation during running-in of rolling contacts. Wear, 315(1-2), 78-86. https://doi.org/10.1016/j.wear.2014.04.009
  • [41] Neslusan, M., Hrabovsky, T., & Cillikova, M. (2015). Barkhausen Noise Emission in Milled Surfaces. Communications-Scientific letters of the University of Zilina, 17(3), 57-61.
  • [42] Yin, Q., Li, C., Dong, L., Bai, X., Zhang, Y., Yang, M., Jia, D., Hou, Y., Liu, Y. & Li, R. (2018). Effects of the physicochemical properties of different nanoparticles on lubrication performance and experimental evaluation in the NMQL milling of Ti-6Al-4V. The International Journal of Advanced Manufacturing Technology, 99(9), 3091-3109. https://doi.org/10.1007/s00170-018-2611-8
  • [43] International Organization for Standardization. (1996). Geometrical Product Specification (GPS) - Surface texture: Profile method - Surfaces having stratified functional properties - Part 2: Height characterization using the linear material ratio curve (ISO Standard No. 13565-2:1996). https://www.iso.org/standard/22280.html
  • [44] Dimkovski, Z. (2006). Characterization of a cylinder liner surface by roughness parameters analysis [Student thesis, Blekinge Institute of Technology]. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-5718 http://urn.kb.se/resolve?urn=urn:nbn:se:bth-5718
  • [45] Javadi, H., Jomaa, W., Texier, D., Brochu, M., & Bocher, P. (2017). Surface Roughness Effects on the Fatigue Behavior of As-Machined Inconel718. Solid State Phenomena, 258, 306-309. https://doi.org/10.4028/www.scientific.net/ssp.258.306
  • [46] Pawlus, P., Cieslak, T., & Mathia, T. (2009). The study of cylinder liner plateau honing process. Journal of Materials Processing Technology, 209(20), 6078-6086. https://doi.org/10.1016/j.jmatprotec.2009.04.025
  • [47] Whitehouse, D. J. (1994). Handbook of Surface Metrology. CRC Press. https://doi.org/10.1016/0141-6359(94)90233-X
  • [48] Whitehouse, D. J., & Phillips, M. J. (1982). Two-dimensional properties of random surfaces. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 305(1490), 441-468. https://doi.org/10.1098/rsta.1982.0043
  • [49] Lonardo, P. M., Trumpold, H., & De Chiffre, L. (1996). Progress in 3D surface microtopography characterization. CIRP Annals, 45(2), 589-598. https://doi.org/10.1016/s0007-8506(07)60513-7
  • [50] Blateyron, F. (2013). The Areal Field Parameters. In: R. Leach (Eds.), Characterisation of Areal Surface Texture (pp. 15-43). Springer. https://doi.org/10.1007/978-3-642-36458-7_2
  • [51] Filipova, N., & Rudzitis, J. (2013). Surface Texture Parameters Application for Nanocoatings. Transport and Engineering. Production Technologies, 35, 118-124.
  • [52] Annunziata, M., Oliva, A., Basile, M. A., Giordano, M., Mazzola, N., Rizzo, A., Lanza, A., & Guida, L. (2011). The effects of titanium nitride-coating on the topographic and biological features of TPS implant surfaces. Journal of Dentistry, 39(11), 720-728. https://doi.org/10.1016/j.jdent.2011.08.003
  • [53] Sedlaček, M., Gregorčič, P., & Podgornik, B. (2017). Use of the roughness parameters S sk and S ku to control friction - A method for designing surface texturing. Tribology Transactions, 60(2), 260-266. https://doi.org/10.1080/10402004.2016.1159358
  • [54] Ereifej, N. S., Oweis, Y. G., & Eliades, G. (2012). The effect of polishing technique on 3-D surface roughness and gloss of dental restorative resin composites. Operative Dentistry, 38(1), E9-E20. https://doi.org/10.2341/12-122-l
  • [55] Löberg, J., Mattisson, I., Hansson, S., & Ahlberg, E. (2010). Characterisation of titanium dental implants I: critical assessment of surface roughness parameters. The Open Biomaterials Journal, 2(1), 18-35. https://doi.org/10.2174/1876502501002010018
  • [56] Berglund, J., Brown, C. A., Rosen, B. G., & Bay, N. (2010). Milled die steel surface roughness correlation with steel sheet friction. CIRP Annals, 59(1), 577-580. https://doi.org/10.1016/j.cirp.2010.03.140
  • [57] Kalisz, J., Zak, K., Grzesik, W., & Czechowski, K. (2015). Characteristics of Surface Topography after Rolling Burnishing of EM AW-AlCu4MgSi (A) Aluminium Alloy. Journal of Machine Engineering, 15(1), 71-80.
  • [58] Waterworth, A. (2006). Quantitative characterisation of surface finishes on stainless steel sheet using 3D surface topography analysis [Doctoral dissertation, University of Huddersfield]. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.445085
  • [59] Rubach, S., Riemer, T., Valentin, J., & Delto, C. (2014). Wear detection on cylinder liners with optical 3D measuring technology. MTZ worldwide, 75(3), 38-43. https://doi.org/10.1007/s38313-014-0032-0
  • [60] Zhong, Z. W., Lu, Y. G. (2002). 3D characterization of super-smooth surfaces of diamond turned OFHC copper mirrors. Materials and Manufacturing Processes, 17(3), 387-399. https://doi.org/10.1081/amp-120005384
  • [61] Cresti, S., Itri, A., Rebaudi, A., Diaspro, A., & Salerno, M. (2015). Microstructure of Titanium-Cement-Lithium Disilicate Interface in CAD-CAM Dental Implant Crowns: A Three-Dimensional Profilometric Analysis. Clinical Implant Dentistry & Related Research, 17, 97-106. https://doi.org/10.1111/cid.12133
  • [62] Derchi, G., Vano, M., Barone, A., Covani, U., Diaspro, A., & Salerno, M. (2017). Bacterial adhesion on direct and indirect dental restorative composite resins: An invitro study on a natural biofilm. Journal of Prosthetic Dentistry, 117(5), 669-676. https://doi.org/10.1016/j.prosdent.2016.08.022
  • [63] Salerno, M., Caneva-Soumetz, F., Pastorino, L., Patra, N., Diaspro, A., & Ruggiero, C. (2013). Adhesion and proliferation of osteoblast-like cells on anodic porous alumina substrates with different morphology. IEEE Transactions on Nanobioscience, 12(2), 106-111. https://doi.org/10.1109/tnb.2013.2257835
  • [64] Salerno, M., Loria, P., Matarazzo, G., Tomè, F., Diaspro, A., & Eggenhöffner, R. (2016). Surface morphology and tooth adhesion of a novel nanostructured dental restorative composite. Materials, 9(3). https://doi.org/10.3390/ma9030203
  • [65] Bulaha, N., & Rudzitis, J. (2018). Calculation possibilities of 3D parameters for surfaces with irregular roughness. Latvian Journal of Physics and Technical Sciences, 55(4), 70-79. https://doi.org/10.2478/lpts-2018-0030
  • [66] Madej, M., Kowalczyk, J., Ozimina, D., & Milewski, K. (2018). The Tribological Properties of Titanium Carbonitride TiCN Coating Lubricated with Non-Toxic Cutting Fluid. Materials Research Proceedings, 5, 47-53. https://doi.org/10.21741/9781945291814-9
  • [67] Sedlaček, M., Podgornik, B., & Vižintin, J. (2012). Correlation between standard roughness parameters skewness and kurtosis and tribological behaviour of contact surfaces. Tribology International, 48, 102-112. https://doi.org/10.1016/j.triboint.2011.11.008
  • [68] Ţălu, Ş., Patra, N., & Salerno, M. (2015). Micromorphological characterization of polymer-oxide nanocomposite thin films by atomic force microscopy and fractal geometry analysis. Progress in Organic Coatings, 89, 50-56. https://doi.org/10.1016/j.porgcoat.2015.07.024
  • [69] Salerno, M., Reverberi, A. P., & Baino, F. (2018). Nanoscale topographical characterization of orbital implant materials. Materials, 11(5), 660. https://doi.org/10.3390/ma11050660
  • [70] Prajapati, D. K., & Tiwari, M. (2019). Assessment of topography parameters during running-in and subsequent rolling contact fatigue tests. Journal of Tribology, 141(5). https://doi.org/10.1115/1.4042676
  • [71] Schulz, E., Calandra, I., Kaiser, T. M. (2010). Applying tribology to teeth of hoofed mammals. Scanning, 32(4), 162-182. https://doi.org/10.1002/sca.20181
  • [72] Li, Q., Yang, G., Wang, K. C., Zhan, Y., & Wang, C. (2017). Novel macro- and microtexture indicators for pavement friction by using high-resolution three-dimensional surface data. Transportation Research Record, 2641(1), 164-176. https://doi.org/10.3141/2641-19
  • [73] Reizer, R., Pawlus, P. (2011). 3D surface topography of cylinder liner forecasting during plateau honing process. In Journal of Physics: Conference Series. IOP Publishing, 311(1), 012021. https://doi.org/10.1088/1742-6596/311/1/012021
  • [74] Jiang, X. Q., & Blunt, L. (2003). Surface analysis techniques to optimise the performance of CNC machine tools. WIT Transactions on Engineering Sciences, 44.
  • [75] Biondani, F. G., Bissacco, G., Pilný, L. & Hansen, H. N. (2019). Analysis and Characterization of Machined Surfaces with Aesthetic Functionality. International Journal of Automation Technology, 13(2), 261-269. https://doi.org/10.20965/ijat.2019.p0261
  • [76] Islamova, A., & Ponomarev, K. (2019). Wetting and spreading of droplets on rough aluminum surfaces. In EPJ Web of Conferences. EDP Sciences, 196, 00024. https://doi.org/10.1051/epjconf/201919600024
  • [77] Sul, Y. T., Kang, B. S., Johansson, C., Um, H. S., Park, C. J., & Albrektsson, T. (2009). The roles of surface chemistry and topography in the strength and rate of osseointegration of titanium implants in bone. Journal of Biomedical Materials Research Part A, 89(4), 942-950. https://doi.org/10.1002/jbm.a.32041
  • [78] Salerno, M., Itri, A., Frezzato, M., & Rebaudi, A. (2015). Surface Microstructure of Dental Implants Before and After Insertion: An In Vitro Study by Means of Scanning Probe Microscopy. Implant Dentistry, 24(3), 248-255.
  • [79] Stoica, I., Barzic, A. I., & Hulubei, C. (2013). The impact of rubbing fabric type on surface roughness and tribological properties of some semi-alicyclic polyimides evaluated from atomic force measurements. Applied Surface Science, 268, 442-449. https://doi.org/10.1016/j.apsusc.2012.12.123
  • [80] Dzierwa, A., Reizer, R., Pawlus, P., & Grabon, W. (2014). Variability of areal surface topography parameters due to the change in surface orientation to measurement direction. Scanning: The Journal of Scanning Microscopies, 36(1), 170-183. https://doi.org/10.1002/sca.21115
  • [81] Wizner, M., Jakubiec, W., & Starczak, M. (2011). Description of surface topography of sealing rings. Wear, 271(3-4), 571-575. https://doi.org/10.1016/j.wear.2010.04.036
  • [82] Waikar, R. A., & Guo, Y. B. (2008). A comprehensive characterization of 3D surface topography induced by hard turning versus grinding. Journal of Materials Processing Technology, 197(1-3), 189-199. https://doi.org/10.1016/j.jmatprotec.2007.05.054
  • [83] Alipour, R., Riazifar, M. R., & Afsari, T. (2016). The effect of pressure on morphological features and quality of synthesized graphene. Research on Chemical Intermediates, 42(12), 8261-8272. https://doi.org/10.1007/s11164-016-2594-8
  • [84] Casoli, A., Cremonesi, P., Isca, C., Groppetti, R., Pini, S., & Senin, N. (2013). Evaluation of the effect of cleaning on the morphological properties of ancient paper surface. Cellulose, 20(4), 2027-2043. https://doi.org/10.1007/s10570-013-9975-6
  • [85] Ţălu, Ş., Bramowicz, M., Kulesza, S., Pignatelli, F., & Salerno, M. (2017). Surface Morphology Analysis of Composite Thin Films based on Titanium-Dioxide Nanoparticles. Acta Physica Polonica, A., 131(6), 1529-1533. https://doi.org/10.12693/aphyspola.131.1529
  • [86] Qi, Q., Liu, X., & Jiang, X. (2009). Functions and three-dimensional parameters of surface texture. In Fifth International Symposium on Instrumentation Science and Technology. International Society for Optics and Photonics, 7133, 713303. https://doi.org/10.1117/12.811358
  • [87] Clare, A. T., Speidel, A., Mitchell-Smith, J., & Patwardhan, S. (2017). Electrolyte design for suspended particulates in electrolyte jet processing. CIRP Annals, 66(1), 201-204. https://doi.org/10.1016/j.cirp.2017.04.133
  • [88] Mironov, V., Stankevich, P., Tatarinov, A., Zemchenkov, V., & Boiko, I. (2015, October). Mechanical and Acoustical Properties of Bushings Made of Low-Alloyed Materials and Used in Brake Systems of Transport Vehicles. In IOP Conference Series: Materials Science and Engineering. IOP Publishing, 6(1), 0120169. https://doi.org/10.1088/1757-899x/96/1/012016
  • [89] Baglin, K. P. (1986). Micro-elastohydrodynamic lubrication and its relationship with running-in. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 200(6), 415-424. https://doi.org/10.1243/pime_proc_1986_200_150_02
  • [90] Ohlsson, R., Rosén, B. G., & Westberg, J. (2003). The interrelationship of 3D surface characterisation techniques with standardised 2D techniques. In L. Blunt, X. Jiang (Eds.), Advanced Techniques for Assessment Surface Topography: Development of a Basis for 3D Surface Texture Standards “SURF-STAND” (pp. 197-220). Kogan Page Science. https://doi.org/10.1016/b978-190399611-9/50008-6
  • [91] Grzesik, W., Rech, J., & Żak, K. (2015). Characterization of surface textures generated on hardened steel parts in high-precision machining operations. The International Journal of Advanced Manufacturing Technology, 78(9-12), 2049-2056. https://doi.org/10.1007/s00170-015-6800-4
  • [92] Deleanu, L., Georgescu, C., & Suciu, C. (2012). A comparison between 2D and 3D surface parameters for evaluating the quality of surfaces. The Annals of “Dunarea de Jos” University of Galati, Fascicle V, Technologies in Machine Building, 30(1), 5-12.
  • [93] Pawlus, P., Reizer, R., & Wieczorowski, M. (2018). Comparison of results of surface texture measurement obtained with stylus methods and optical methods. Metrology and Measurement Systems, 25(3), 589-602. https://doi.org/10.1515/mms-2017-0046
  • [94] Barányi, I., Czifra, Á., & Kalácska, G. (2011). Height-independent topographic parameters of worn surfaces. Sustainable Construction and Design, 2(1), 35.
  • [95] Blunt, L., & Jiang, X. (2003). Numerical Parameters for Characterisation of Topography. In L. Blunt, X. Jiang (Eds.), Advanced Techniques for Assessment Surface Topography: Development of a Basis for 3D Surface Texture Standards “SURFSTAND” (pp. 17-41). Kogan Page Science. https://doi.org/10.1016/b978-190399611-9/50002-5
  • [96] Pawlus, P., Reizer, R., Wieczorowski, M., & Krolczyk, G. (2020). Material ratio curve as information on the state of surface topography - A review. Precision Engineering, 65, 240-258. https://doi.org/10.1016/j.precisioneng.2020.05.008
  • [97] Jiang, X. Q., Blunt, L., Stout, K. J. (2010). Comparison study of areal functional parameters for rough surfaces. Proc ASPE, Nashville.
  • [98] Fahl, C. F. (1982). Motif combination - a new approach to surface profile analysis. Wear, 83(1), 165-179. https://doi.org/10.1016/0043-1648(82)90349-0
  • [99] International Organization for Standardization. (1996). Geometrical Product Specification (GPS) - Surface texture: Profile method - Motif parameters (ISO Standard No. 12085:1996). https://www.iso.org/standard/20867.html
  • [100] Pawlus, P., Graboń, W., & Reizer, R. (2013). Variation of areal parameters on machined surfaces. 11th International Symposium on Measurement and Quality Control, Poland.
  • [101] Tian, Y., Wang, J., Peng, Z., & Jiang, X. (2011). Numerical analysis of cartilage surfaces for osteoarthritis diagnosis using field and feature parameters. Wear, 271(9-10), 2370-2378. https://doi.org/10.1016/j.wear.2011.01.081
  • [102] Wang, J., Jiang, X., Gurdak, E., Scott, P., Leach, R., Tomlins, P., & Blunt, L. (2011). Numerical characterisation of biomedical titanium surface texture using novel feature parameters. Wear, 271(7-8), 1059-1065. https://doi.org/10.1016/j.wear.2011.05.018
  • [103] Stach, S., Dallaeva, D., Ţalu, Ş., Kaspar, P., Tománek, P., Giovanzana, S., & Grmela, L. (2015). Morphological features in aluminum nitride epilayers prepared by magnetron sputtering. Materials Science-Poland, 33(1), 175-184. https://doi.org/10.1515/msp-2015-0036
  • [104] Ţălu, Ş., Ghazai, A. J., Stach, S., Hassan, A., Hassan, Z., & Ţălu, M. (2014). Characterization of surface roughness of Pt Schottky contacts on quaternary n-Al 0.08 In 0.08 Ga 0.84 N thin film assessed by atomic force microscopy and fractal analysis. Journal of Materials Science: Materials in Electronics, 25(1), 466-477. https://doi.org/10.1007/s10854-013-1611-6
  • [105] Glon, F, Flys, O., & Lööf, P. J. (2014). 3D SEM for surface topography quantification - a case study on dental surfaces. In Journal of Physics: Conference Series. IOP Publishing, 483(1), 012026. https://doi.org/10.1088/1742-6596/483/1/012026
  • [106] Blanc, J., Grime, D., & Blateyron, F. (2011). Surface characterization based upon significant topographic features. In Journal of Physics: Conference Series. IOP Publishing, 311(1), 012014. https://doi.org/10.1088/1742-6596/311/1/012014
  • [107] Scott, P. J. (2009). Feature parameters. Wear, 266(5-6), 548-551. https://doi.org/10.1016/j.wear.2008.04.056
  • [108] Dimkovski, Z., Ohlsson, R., & Rosén, B. G. (2014). Effect of the measurement size on the robustness of the assessment of the features specific for cylinder liner surfaces. Surface Topography: Metrology and Properties, 2(1), 014013. https://doi.org/10.1088/2051-672x/2/1/014013
  • [109] Majumdar, A., & Tien, C. L. (1990). Fractal characterization and simulation of rough surfaces. Wear, 136(2), 313-327. https://doi.org/10.1016/0043-1648(90)90154-3
  • [110] Brown, C. A., Charles, P. D., Johnsen, W. A., & Chesters, S. (1993). Fractal analysis of topographic data by the patchwork method. Wear, 161(1-2), 61-67. https://doi.org/10.1016/0043-1648(93)90453-s
  • [111] Brown, C. A., & Siegmann, S. (2001). Fundamental scales of adhesion and area-scale fractal analysis. International Journal of Machine Tools and Manufacture, 41(13-14), 1927-1933. https://doi.org/10.1016/s0890-6955(01)00057-8
  • [112] Salerno, M., Giacomelli, L., & Derchi, G. (2010). Atomic force microscopy in vitro study of Surface roughness and fractal character of a dental restoration composite after air-polishing. Biomedical Engineering online, 9(1), 59. https://doi.org/10.1186/1475-925x-9-59
  • [113] Jian-Chao, C., Bo-Ming, Y., & Ming-Qing, Z. (2010). Fractal analysis of surface roughness of particles in porous media. Chinese Physics Letters, 27(2), 024705. https://doi.org/10.1088/0256-307x/27/2/024705
  • [114] Goedecke, A., Jackson, R. L., Mock, R. (2013). A fractal expansion of a three-dimensional elastic-plastic multi-scale rough surface contact model. Tribology International, 59, 230-239. https://doi.org/10.1016/j.triboint.2012.02.004
  • [115] Karabelchtchikova, O., Brown, C. A., & Sisson, R. D. (2007). Effect of surface roughness on kinetics of mass transfer during gas carburising. International Heat Treatment and Surface Engineering, 1(4), 164-170. https://doi.org/10.1179/174951507x264991
Uwagi
1. This work is supported by the National Natural Science Foundation of China (51635001).
2. Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ed810d76-cfbb-4177-820f-8f470107faed
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.