PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of induced temperature field on development of curvilinear crack with bonds between the faces in end zones

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Temperature changes near the end of a curvilinear cohesive crack and their influence on crack growth are investigated. The problem of local temperature changes consists in a delay or retardation of the cohesive crack growth. The bonds between the curvilinear crack faces in the end zones are modeled by application to the crack surface cohesive forces caused by the presence of bonds. The boundary value problem of equilibrium of the curvilinear crack with interfacial bonds in the end zones under action of external tensile loads, induced temperature field and tractions in the bonds preventing to its opening, is reduced to a system of singular integral equations with a Cauchy-type kernel. From the solution of this equation system, normal and tangential tractions in the bonds are found. Analysis of the limit equilibrium of the crack using the end zone model is performed on the basis of a criterion of bonds limiting stretching and includes: 1) establishment of tractions depending on opening of the crack faces; 2) evaluation of the stress state near the curvilinear crack with taking into account tensile loads, induced temperature field, tractions in the bonds; 3) determination of the critical external tensile loads.
Rocznik
Strony
765--778
Opis fizyczny
Bibliogr. 32 poz., rys.
Twórcy
  • Azerbaijan Technical University and Institute of Mathematics and Mechanics of NAS of Azerbaijan, Baku, Azerbaijan Republic
  • Institute of Mathematics and Mechanics of NAS of Azerbaijan, Baku, Azerbaijan Republic
Bibliografia
  • 1. Barenblatt G.I., 1961, The mathematical theory for equilibrium cracks formed on brittle fracture (in Russian), Journal of Applied Mechanics and Technical Physics, 2, 4, 3-56
  • 2. Dimaki A.V., Mel’nikov A.G., Pleshanov V.S., Sizova O.V., 2010, Theoretical and experimental study of the healing of surface cracks using induction heating, Inorganic Materials: Applied Research, 1, 4, 353-358
  • 3. Dugdale D.S., 1960, Yielding of steel sheets containing slits, Journal of the Mechanics and Physics of Solids, 8, 100-108
  • 4. Engineering Fracture Mechanics, The special issue: Cohesive Models, 2003, 70, 15, 1741-1987
  • 5. Finkel V.M., 1977, Physical Basis of Fracture Retardation (in Russian), Metallurgiya, Moscow
  • 6. Fu Y.-M., Bai X.-Z., Qiao G.-Y., Hu Y.-D., Luan J.-Y., 2001, Technique for producing crack arrest by electromagnetic heating, Materials Science and Technology, 17, 1653-1656
  • 7. Georgantzinos S.K., Anifantis N.K., 2014, Crack closure, [In:] Encyclopedia of Thermal Stresses, R.B. Hetnarski (Edit.), Springer Netherlands, ISBN 978-94-007-2738-0, 774-779
  • 8. Il’yushin A.A., 2003, Plasticity (in Russian), Logos, Moscow
  • 9. Itou S., 2014, Thermal stresses around two upper cracks placed symmetrically about a lower crack in an infinite orthotropic plane under uniform heat flux, Journal of Theoretical and Applied Mechanics, 52, 617-628
  • 10. Kadiev R.I., Mirsalimov V.M., 2001, Effect of heat source on the dynamics of crack growth (in Russian), Vestnik Dagestanskogo Universiteta, 4, 69-73
  • 11. Ladopoulos E.G., 2000, Singular Integral Equations, Linear and Non-linear Theory and its Applications in Science and Engineering, Springer Verlag, Berlin
  • 12. Ladopoulos E.G., 2013, Non-linear singular integro-differential equations in Banach spaces by collocation evaluation methods, Universal Journal of Integral Equations, 1, 28-38
  • 13. Leonov M.Ya., Panasyuk V.V., 1959, Propagation of fine cracks in solid body (in Russian), Prikladnaya Mekhanika, 5, 391-401
  • 14. Liu T.J.C., 2008, Thermo-electro-structural coupled analyses of crack arrest by Joule heating, Theoretical and Applied Fracture Mechanics, 49, 171-184
  • 15. Liu T.J.C., 2011a, Finite element modeling of melting crack tip under thermo-electric Joule heating, Engineering Fracture Mechanics, 78, 666-684
  • 16. Liu T.J.C., 2011b, Fracture mechanics of steel plate under Joule heating analyzed by energy density criterion, Theoretical and Applied Fracture Mechanics, 56, 154-161
  • 17. Liu T.J.C., 2014a, Compressive stresses near crack tip induced by thermo-electric field, International Journal of Mechanical, Aerospace, Industrial, Mechatronic and Manufacturing Engineering, 8, 11, 1799-1802
  • 18. Liu T.J.C., 2014b, Crack detection/arrest with Joule heating, [In:] Encyclopedia of Thermal Stresses, R.B. Hetnarski (Edit.), Springer Netherlands, ISBN 978-94-007-2738-0, 779-791
  • 19. Liu T.J.C., Tseng J.F., Chen P.H., 2015, Analysis of thermo-electric field in steel strip with multiple cracks, Proceedings of the 3rd International Conference on Industrial Application Engineering, 408-412
  • 20. Mirsalimov V.M., 1987, Non-one Dimensional Elastoplastic Problems (in Russian), Nauka, Moscow
  • 21. Mirsalimov V.M., 2007, The solution of a problem in contact fracture mechanics on the nucleation and development of a bridged crack in the hub of a friction pair, Journal of Applied Mathematics and Mechanics, 71, 120-136
  • 22. Mirsalimov V.M., Kadiev R.I., 2004, Closing of a crack in the sheet element under action of local thermal field, Journal of Machinery Manufacture and Reliability, 33, 6, 69-75
  • 23. Mirsalimov V.M., Mustafayev A.B., 2015a, A contact problem on partial interaction of faces of a variable thickness slot under the influence of temperature field, Mechanika, 21, 19-22
  • 24. Mirsalimov V.M., Mustafayev A.B., 2015b, Solution of the problem of partial contact between the faces of a slot of variable width under the action of temperature fields, Materials Science, 51, 96-103
  • 25. Mirsalimov V.M., Mustafayev A.B., 2016, Influence of local temperature field on propagation of a curvilinear crack with interfacial bonds, ZAMM – Journal of Applied Mathematics and Mechanics, 96, 1339-1346
  • 26. Morozov E.M., 1969, On the strength analysis by the stage of fracture (in Russian), Deform. Razrush. Term. Mekh. Vozdeistv, 3, 87-90
  • 27. Muskhelishvili N.I., 2010, Some Basic Problem of Mathematical Theory of Elasticity, Springer, Amsterdam
  • 28. Panasyuk V.V, Savruk M.P., Datsyshyn A.P., 1976, The Stress Distribution Around Cracks in Plates and Shells (in Russian), Naukova Dumka, Kiev
  • 29. Parkus H., 1959, Instation¨are W¨armespannungen, Springer-Verlag, Wien
  • 30. Parton V.Z., Morozov E.M., 1985, Elastic-Plastic Fracture Mechanics (in Russian), Nauka, Moscow
  • 31. Potthast B., Herrmann K.P., 2000, Asymptotic analysis for temperature fields induced by dynamic crack growth in pressure-sensitive materials, International Journal of Fracture, 106, 57-64
  • 32. Qin Z, Librescu L., Hasanyan D., 2007, Joule heating and its implications on crack detection/arrest in electrically conductive circular cylindrical shells, Journal of Thermal Stresses, 30, 623-637
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ed7f4646-99d8-4406-a0d8-9a5492ad2e93
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.