PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Impact assessment of climate change on water resources in the upstream of a Tunisian RAMSAR heritage site (Ichkeul Lake) using HEC-HMS model

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Climate change is one of the most important global challenges of this century, with significant impacts on water resources, economic development and ecological health. This study aimed to investigate the effect of climate change on streamflow in Joumine watershed, upstream the Ichkeul Lake, a RAMSAR wetland and the most productive ecosystems in Tunisia and the Mediterranean. The hydrologic response of the basin was simulated based on Hydrologic Modelling System HEC-HMS. Climate data were generated from the emission scenarios RCP4.5 and RCP8.5 from the Irish Regional Climate Model (RCM) for the periods 2030-2060 and 2061-2100. The statistical analysis showed that model performance is satisfactory, with Nash-Sutcliffe efficiency of 0.7 and 0.64 for calibration and validation, respectively. The climate projections exhibited a declining trend in precipitation during the two future periods with more frequent extreme rainfall events in dry season and a rise in temperature which is more accentuated during the period 2061-2100. Climate change is expected to have profound impacts on water resources and resilience of ecosystems. Results showed that Joumine basin is projected to experience reduction in streamflow which is more pronounced under RCP8.5. The frequency and magnitude of hydrological extremes are expected to be intensified, notably during the far future period, leading to pressure on water availability in the end of the twenty-first century. Hence, sustainable water resources management is needed to close the water demand and supply gap in the Joumine river basin.
Czasopismo
Rocznik
Strony
687--700
Opis fizyczny
Bibliogr. 54 poz.
Twórcy
  • University of Carthage, Higher School of Agriculture, LR03AGR02, Research Laboratory of Agricultural Production Systems and Sustainable Development, 1121 Zaghouane, Tunisia
  • University of Carthage, Higher School of Agriculture, LR03AGR02, Research Laboratory of Agricultural Production Systems and Sustainable Development, 1121 Zaghouane, Tunisia
  • Centre for Water Research and Technologies Technopark Borj-Cedria, Tourist Route of Soliman, PO-box N^273, 8020 Soliman, Tunisia
Bibliografia
  • 1. Abdulahi SD, Abate B, Harka AE, Husen SB (2022) Response of climate change impact on streamflow: the case of the upper awash sub-basin. Ethiopia J Water Clim Chang 13:607-628
  • 2. Ahmadi A, Jalali J, Mohammad A (2022) Future runoff assessment under climate change and land-cover alteration scenarios: a case study of the Zayandeh-Roud dam upstream watershed. Hydrol Res 53(11):1372. https://doi.org/10.2166/nh.2022.056
  • 3. ANPE (1994). Etude de sauvegarde du Parc National d’Ichkeul. National Report. 1-170.
  • 4. Aouissi J, Benabdallah S, Chabaane ZL, Cudennec C (2014) Modeling water quality to improve agricultural practices and land management in a Tunisian catchment using the soil and water assessment tool. J Environ Qual 43(1):18-25. https://doi.org/10.2134/jeq2011.0375
  • 5. Arnold JG, Srinivasan R, Muttiah RS, Williams JR (1998) Large area hydrologic modeling and assessment part I: model development 1. J Am Water Resour Assoc 34:73-89. https://doi.org/10.1111/j.1752-1688.1998.tb05961.x
  • 6. Azmat M, Choi M, Kim TW, Liaqat UW (2016) Hydrological modeling to simulate streamflow under changing climate in a scarcely gauged cryosphere catchment. Environ Earth Sci 75:186. https://doi.org/10.1007/s12665-015-5059-2
  • 7. Ben khélifa W, Mosbahi M (2022) Modeling of rainfall-runoff process using HEC-HMS model for an urban ungauged watershed in Tunisia. Earth Syst Environ 8:1749-1758. https://doi.org/10.1007/s40808-021-01177-6
  • 8. Bergstrom S (1995) The HBV model. In: Singh VP (ed) Computer models of watershed hydrology. Water Resources Publications, Highlands Ranch, pp 443-476
  • 9. Beven KJ, Kirkby MJ (1979) A physically based variable contributing area model of basin hydrology. Hydrol Sci J 24(1):43-69. https:// doi.org/10.1080/02626667909491834
  • 10. Chakroun H, Chabaane ZL, Benabdallah S (2015) Concept and prototype of a spatial decision support system for integrated water management applied to Ichkeul Basin. Tunisia Water Environ J 29(2):169-179. https://doi.org/10.1111/wej.12095
  • 11. Chathuranika IM, Gunathilake MB, Baddewela PK, Sachinthanie E, Babel MS, Shrestha S, Jha MK, Rathnayake US (2022) Comparison of twohydrological models, HEC-HMS and SWAT in runoff estimation: application to Huai Bang Sai tropical watershed. Thailand Fluids 7:267. https://doi.org/10.3390/fluids7080267
  • 12. Clifton CF, Day KT, Luce CH, Grant GE, Safeeq M, Halofsky JE, Staab BP (2018) Effects of climate change on hydrology and water resources in the blue mountains, Oregon. USA Clim Serv 10:9-19. https://doi.Org/10.1016/j.cliser.2018.03.001
  • 13. D’Oria M, Ferraresi M, Tanda MG (2019) Quantifying the impacts of climate change on water resources in northern Tuscany, Italy, using high-resolution regional projections. Hydrol Process 33:978-993
  • 14. Dahri N, Abida H (2022) Hydrologic modeling and flood hydrograph reconstitution under an arid climate condition: case of Gabes Watershed, South-Eastern Tunisia. Environ Dev Sustai 24:10289-10308. https://doi.org/10.1007/s10668-021-01865-4
  • 15. Davtalab R, Mirchi A, Khatami S, Gyawali R, Massah A, Farajzadeh M, Madani K (2017) Improving continuous hydrologic modeling of data-poor river basins using hydrologic engineering center’s hydrologic modeling system: case study of karkheh river basin. J Hydrol Eng 22(8):05017011. https://doi.org/10.1061/(ASCE)HE.1943-5584.0001525
  • 16. Erol A, Randhir TO (2012) Climatic change impacts on the ecohydrology of mediterranean watersheds. Clim Change 114:319-341
  • 17. Fanta SS, Feyissa TA (2021) Performance evaluation of HEC-HMS model for continuous runoff simulation of Gilgel Gibe watershed. Southwest Ethiopia J Water Land Dev 50:85-97. https://doi.org/10.24425/jwld.2021.138185
  • 18. Feldman AD (2000) Hydrologic modeling system HEC-HMS. Technical reference manual. US Army Corps of Engineers (USACE), hydrologic engineering center, HEC. Davis, CA, USA.
  • 19. Hadour A, Mahe G, Meddi M (2020) Watershed based hydrological evolution under climate change effect: an example from North Western Algeria. J Hydrol Reg Stud 28:100671. https://doi.org/10.1016/j.ejrh.2020.100671
  • 20. Hargreaves GH, Samani ZA (1985) Reference crop evapotranspiration from temperature. Appl Eng Agric 1(2):96-99. https://doi.org/10.13031/2013.26773
  • 21. Huang H, Han Y, Song J, Zhang Z, Xiao H (2016) Impacts of climate change on water requirements of winter wheat over 59 years in the Huang-Huai-Hai Plain. Soil Water Res 11:11-19. https://doi.org/10.17221/164/2014-SWR
  • 22. IPCC (2007) Climate change 2007: The physical science basis. contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (Eds.). Cambridge University Press, Cambridge
  • 23. IPCC (2013) Summary for policymakers In: climate change 2013: The physical science basis contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V and Midgley PM (Eds.). Cambridge University Press, Cambridge, pp. 1-30.
  • 24. Jeziorska J, Niedzielski T (2018) Applicability of TOPMODEL in the mountainous catchments in the upper Nysa Kłodzka river basin (SW Poland). Acta Geophys 66:203-222. https://doi.org/10.1007/s11600-018-0121-6
  • 25. Kabiri R, Ramani Bai V, Chan A (2015) Assessment of hydrologic impacts of climate change on the runoff trend in Klang watershed. Malays Environ Earth Sci 73:27-37. https://doi.org/10.1007/s12665-014-3392-5
  • 26. Kang H, Sridhar V, Ali SA (2022) Climate change impacts on conventional and flash droughts in the Mekong River basin. Sci Total Environ 838:155845. https://doi.org/10.1016/j.scitotenv.2022. 155845
  • 27. Kim GU, Seo KH, Chen D (2019) Climate change over the Mediterranean and current destruction of marine ecosystem. Sci Rep 9:18813. https://doi.org/10.1038/s41598-019-55303-7
  • 28. Kim U, Kaluarachchi JJ, Smakhtin VU (2013) Climate change impacts on hydrology and water resources of the upper blue Nile River Basin, Ethiopia. Research Report 126, International Water Management Institute, Colombo Sri Lanka 32pp. https://doi.org/10.22004/ag.econ.53025.
  • 29. Linares C, Díaz J, Negev M, Martínez GS, Debono R, Paz S (2020) Impacts of climate change on the public health of the Mediterranean Basin population: current situation, projections, preparedness and adaptation. Environ Res 182:109107. https://doi.org/10.1016/j.envres.2019.109107
  • 30. Mahmood R, Jia S, Babel MS (2016) Potential impacts of climate change on water resources in the Kunhar river basin. Pak Water 8:23. https://doi.org/10.3390/w8010023
  • 31. Marshall E, Randhir T (2008) Effect of climate change on watershed system: a regional analysis. Clim Change 89:263-280. https://doi.org/10.1007/s10584-007-9389-2
  • 32. Milano M, Ruelland D, Fernandez S, Dezetter A, Fabre J, Servat E (2012) Facing climatic and anthropogenic changes in the Mediterranean basin: What will be the medium-term impact on water stress? Comptes Rendus Geosci 344(9):432-440. https://doi.org/10.1016/j.crte.2012.07.006
  • 33. Min. Agr. (Ministere de l’Agriculture) (2002) Cartes agricoles de la Tunisie. Ministere de l’Agriculture, Tunis, Tunisia.
  • 34. Moriasi DN, Gitau MW, Pai N, Daggupati P (2015) Hydrologic and water quality models: performance measures and evaluation criteria. Trans ASABE 58:1763-1785. https://doi.org/10.13031/trans. 58.10715
  • 35. Mosbahi M, Benabdallah S, Boussema MR (2011) Hydrological modeling in a semi-arid catchment using SWAT model. J Env Sci Eng 5:1695-1701
  • 36. Mosbahi M, Kassouk Z, Benabdallah S, Aouissi J, Arbi R, Mrad M, Blake R, Norouzi H, Bejaoui B (2023) Modeling hydrological responses to land use change in sejnane watershed. North Tunisia Water 15(9):1737. https://doi.org/10.3390/w15091737
  • 37. Nash JE, Sutcliffe V (1970) River flow forecasting through conceptual models, part I: a discussion of principles. J Hydrol 10:282-290. https://doi.org/10.1016/0022-1694(70)90255-6
  • 38. Nasri T, Gara A, Feki H (2019) Application du modele hydrologique HEC-HMS sur la moyenne Medjerda: cas du bassin versant Siliana Laouej. Editions universitaires europeennes.
  • 39. Nerantzaki SD, Efstathiou D, Giannakis GV, Kritsotakis M, Grillakis MG, Koutroulis AG, Tsanis IK, Nikolaidis NP (2019) Climate change impact on the hydrological budget of a large Mediterranean island. Hydrol Sci J 64(10):1190-1203
  • 40. Nesru M, Shetty A, Nagaraj MK (2020) Multi-variable calibration of hydrological model in the upper Omo-Gibe basin. Ethiopia Acta Geophys 68:567-551. https://doi.org/10.1007/s11600-020-00417-0
  • 41. Nhemachena C, Nhamo L, Matchaya G, Nhemachena CR, Muchara B, Karuaihe ST, Mpandeli S (2020) Climate change impacts on water and agriculture sectors in southern Africa: threats and opportunities for sustainable development. Water 12:2673. https://doi.org/10.3390/w12102673
  • 42. Ouedraogo WAA, Raude JM, Gathenya JM (2018) Continuous modelingof the Mkurumudzi River catchment in Kenya using the HEC-HMS conceptual model: calibration, validation, model performance evaluation and sensitivity analysis. Hydrology 5(3):44. https://doi.org/10.3390/hydrology5030044
  • 43. Refsgaard JC, Storm B (1995) MIKE SHE. In: Singh VP (ed) Computer models of watershed hydrology. Water Resources Publications, Colorado, Chapter 23, pp 809-846
  • 44. Sahbani S, Bejaoui B, Benabdallah S, Toujani R, Fathalli A, Zaaboub N, Aouissi J et al (2022) Systematic review of a RAMSAR wetland and UNESCO biosphere reserve in a climate change hotspot (Ichkeul Lake, Tunisia). J Sea Res 190:102288. https://doi.org/10.1016/j.seares.2022.102288
  • 45. Savino M, Todaro V, Maranzoni A, D’Oria M (2023) Combining hydrological modeling and regional climate projections to assess the climate change impact on the water resources of dam reservoirs. Water 15:4243. https://doi.org/10.3390/w15244243
  • 46. Scharffenberg W, Fleming M (2010) Hydrologic modeling system HEC-HMS v3.5: Users manual. Davis, CA. USACE, hydrologic engineering center. pp. 318.
  • 47. Sintayehu LG (2015) Application of the HEC-HMS model for runoff simulation of upper blue nile river basin. Hydrol Cur Res 6:199. https://doi.org/10.4172/2157-7587.1000199
  • 48. Stefanidis K, Panagopoulos Y, Mimikou M (2018) Response of a multi-stressed Mediterranean river to future climate and socioeconomic scenarios. Sci Total Environ 627:756-769. https://doi.org/10.1016/j.scitotenv.2018.01.282
  • 49. Storms I, Verdonck S, Verbist B, Willems P, De Geest P, Gutsch M, Cools N, De Vos B, Mahnken M, Lopez J, Orshoven JV, Muys B (2022) Quantifying climate change effects on future forest biomass availability using yield tables improved by mechanistic scaling. Sci Total Environ 833:155189. https://doi.org/10.1016/j.scitotenv.2022.155189
  • 50. Tarekegn N, Abate B, Muluneh A et al (2022) Modeling the impact of climate change on the hydrology of Andasa watershed.
  • 51. Model Earth Syst Environ 8:103-119. https://doi.org/10.1007/s40808-020-01063-7
  • 52. USACE (2001) Hydrologic modeling system HEC-HMS. User’s manual, version 2.1. US army corps of engineers, hydrologic engineering center, 178 p.
  • 53. Yusop Z, Chan C, Katimon A (2007) Runoff characteristics and application of HEC-HMS for modelling stormflow hydrograph in an oil palm catchment. Water Sci Technol 56(8):41-48. https://doi.org/10.2166/wst.2007.690
  • 54. Zhong Lu, Li K, Zhang J, Lei G, Ziyang Yu, Li C (2023) Mechanisms influencing changes in water cycle processes in the changing environment of the Songnen Plain. China Sci Total Env 905:166916. https://doi.org/10.1016/j.scitotenv.2023.166916
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ed7c9bc9-b78e-45ed-9d06-86faafa9ed63
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.