PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of silver-containing filler on antibacterial properties of experimental resin composites against Enterococcus faecalis

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The aim of the presented work was to investigate the impact of the S-P introduction into resin-based composites on their effectiveness against Enterococcus faecalis (E. faecalis). Design/methodology/approach: Seven experimental composites based on typical matrix were developed. Six of them contained a filler with antimicrobial properties (silver sodium hydrogen zirconium phosphate, S-P), while the control material contained only common reinforcement fillers. The materials were characterized in terms of the dispersion of the extender in the matrix and then subjected to microbiological tests. The efficiency in the reduction of E. faecalis in the microenvironment was tested. Findings: The composites show a satisfactory distribution of fillers and a high initial reduction of bacteria colonies for the tested strain of E. faecalis. The reduction in bacteria colonies achieved for S-P concentrations from 7% to 13% was similar (median value from 99.8 to 99.9%, when for control material and compound with 1% S-P the number of colonies increased compared to positive control. Research limitations/implications: Laboratory test results may differ from in vivo test performance. In addition, there are many models for conducting laboratory antimicrobial efficacy studies, the results of which are also varied. The cytotoxic tests, long-term investigations and in vivo experiments need to be performed in future experiments. Practical implications: E. faecalis is a Gram-positive bacterium that is commonly detected in persistent endodontic infections and may enter the root canal through the coronal part. Development of composites with antimicrobial properties against this bacterium is as important as obtaining efficacy against cariogenic bacteria. Originality/value: The antimicrobial effectiveness against E. faecalis of experimental composites with submicrometer-sized particles of S-P was not investigated until now.
Rocznik
Strony
59--67
Opis fizyczny
Bibliogr. 51 poz., rys., tab.
Twórcy
autor
  • Happy Dent Specialized Dental Clinic, Krakowska 47 Street, 97-500 Radomsko, Poland
autor
  • Happy Dent Specialized Dental Clinic, Krakowska 47 Street, 97-500 Radomsko, Poland
autor
  • Department of Engineering Materials and Biomaterials, Faculty of Mechanical Engineering, Silesian University of Technology, ul. Konarskiego 18A, 44-100 Gliwice, Poland
autor
  • Department of Engineering Materials and Biomaterials, Faculty of Mechanical Engineering, Silesian University of Technology, ul. Konarskiego 18A, 44-100 Gliwice, Poland
autor
  • Department of Microbiology and Immunology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Jordana 19, 41-808 Zabrze, Poland
Bibliografia
  • [1] GBD 2015 Disease and Injury Incidence and Prevalence Collaborators, Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015, Lancet 388 (2016) 1545-1602. DOI: https://doi.org/10.1016/S0140-6736(16)31678-6
  • [2] D. Dzhendov, I. Katreva, T. Dikova, Prosthetic treatment protocol with fixed dental constructions made on 3D printed cast patterns, Archives of Materials Science and Engineering 90/1 (2018) 33-40. DOI: https://doi.org/10.5604/01.3001.0012.0611
  • [3] J. Taczała, W. Czepułkowska, B. Konieczny, J. Sokołowski, M. Kozakiewicz, P. Szymor, Comparison of 3D printing MJP and FDM technology in dentistry, Archives of Materials Science and Engineering 101/1 (2020) 32-40. DOI: https://doi.org/10.5604/01.3001.0013.9504
  • [4] L.A. Dobrzański, A.D. Dobrzańska-Danikiewicz, Z.P. Czuba, L.B. Dobrzański, A. Achtelik-Franczak, P. Malara, M. Szindler, L. Kroll, The new generation of the biologicalengineering materials for applications in medical and dental implant-scaffolds, Archives of Materials Science and Engineering 91/2 (2018) 56-85. DOI: https://doi.org/10.5604/01.3001.0012.5490
  • [5] L.B. Dobrzański, A. Achtelik-Franczak, J. Dobrzańska, L.A. Dobrzański, The digitisation for the immediate dental implantation of incisors with immediate individual prosthetic restoration, Journal of Achievements in Materials and Manufacturing Engineering 97/2 (2019) 57-68. DOI: https://doi.org/10.5604/01.3001.0013.8541
  • [6] P. Malara, K. Paluch, K. Sobolewska, A. Pasieka, The study of the connection between the zirconia substructure and veneering porcelain in dental crowns subjected to occlusal for ces, Archives of Materials Science and Engineering 81/1 (2016) 5-13. DOI: https://doi.org/10.5604/18972764.1229621
  • [7] T.D. Dikova, D.A. Dzhendov, I. Ivanov, K. Bliznakova, Dimensional accuracy and surface roughness of polymeric dental bridges produced by different 3D printing processes, Archives of Materials Science and Engineering 94/2 (2018) 65-75. DOI: https://doi.org/10.5604/01.3001.0012.8660
  • [8] M. Rzepkowska, B. Burnat, K. Pietnicki, S. Skrzypek, L. Klimek, The effect of repeated heating on corrosion resistance, hardness and microstructure of a Co-Cr-W prosthetic alloy, Journal of Achievements in Materials and Manufacturing Engineering 99/2 (2020) 64-71. DOI: https://doi.org/10.5604/01.3001.0014.1778
  • [9] N. Jayanthi, V. Vinod, Comparative evaluation of compressive strength and flexural strength of conventional core materials with nanohybrid composite resin core material an in vitro study, Journal of Indian Prosthodontic Society 13 (2013) 281-289. DOI: https://doi.org/10.1007/s13191-012-0236-4
  • [10] Á. Ástvaldsdóttir, J. Dagerhamn, J.W.V. van Dijken, A. Naimi-Akbar, G. Sandborgh-Englund, S. Tranæus, M. Nilsson, Longevity of posterior resin composite restorations in adults - A systematic review, Journal of Dentistry 43/8 (2015) 934-954. DOI: https://doi.org/10.1016/j.jdent.2015.05.001
  • [11] H. Alzraikat, M. Burrow, G. Maghaireh, N. Taha, Nanofilled Resin Composite Properties and Clinical Performance: A Review, Operative Dentistry 43/4 (2018) E173-E190. DOI: https://doi.org/10.2341/17-208-T
  • [12] A. Cândea Ciurea, P. Şurlin, Ş.-I. Stratul, A. Soancă, A. Roman, M. Moldovan, L. Tudoran B., E. Pall, Evaluation of the biocompatibility of resin composite-based dental materials with gingival mesenchymal stromal cells, Microscopy Research and Technique 82/10 (2019) 1768-1778. DOI: https://doi.org/10.1002/jemt.23343
  • [13] M.M. AlShaafi, Factors affecting polymerization of resin-based composites: A literature review, The Saudi Dental Journal 29/2 (2017) 48-58. DOI: https://doi.org/10.1016/j.sdentj.2017.01.002
  • [14] T. Almohareb, A.A. Alayed, K.M. Alzahrani, A.M. Maawadh, B. Almutairi, R.S. Alhamdan, A. Bahkali, T. Abduljabbar, F. Vohra, Influence of curing duration and mixing techniques of bulk fill resin composites on bi-axial flexural strength and degree of conversion, Journal of Applied Biomaterials and Functional Materials 18 (2020) 1-9. DOI: https://doi.org/10.1177/2280800020975721
  • [15] N.J.M. Opdam, F.H. van de Sande, E. Bronkhorst, M.S. Cenci, P. Bottenberg, U. Pallesen, P. Gaengler, A. Lindberg, M.C.D.N.J.M. Huysmans, J.W. van Dijken, Longevity of posterior composite restorations: a systematic review and meta-analysis, Journal of Dental Research 93/10 (2014) 943-949. DOI: https://doi.org/10.1177/0022034514544217
  • [16] T. Pereira‐Cenci, M.S. Cenci, Z. Fedorowicz, M. Azevedo, Antibacterial agents in composite restorations for the prevention of dental caries, Cochrane Database of Systematic Reviews 12 (2013) CD007819. DOI: https://doi.org/10.1002/14651858.CD007819.pub3
  • [17] W.-Y. Shih, Microleakage in different primary tooth restorations, Journal of the Chinese Medical Association 79/4 (2016) 228-234. DOI: https://doi.org/10.1016/j.jcma.2015.10.007
  • [18] I. Nedeljkovic, W. Teughels, J. De Munck, B. Van Meerbeek, K.L. Van Landuyt, Is secondary caries with composites a material-based problem?, Dental Materials 31/11 (2015) e247-e277. DOI: https://doi.org/10.1016/j.dental.2015.09.001
  • [19] M. Łukomska-Szymańska, B. Zarzycka, J. Grzegorczyk, K. Sokołowski, K. Półtorak, J. Sokołowski, B. Łapińska, Antibacterial properties of calcium fluoride-based composite materials: in vitro study, BioMed Research International 2016 (2016) 1048320. DOI: https://doi.org/10.1155/2016/1048320
  • [20] X. Chatzistavrou, A. Lefkelidou, L. Papadopoulou, E. Pavlidou, K.M. Paraskevopoulos, J.C. Fenno, S. Flannagan, C. González-Cabezas, N. Kotsanos, P. Papagerakis, Bactericidal and Bioactive Dental Composites, Frontiers in Physiology 9 (2018) 103. DOI: https://doi.org/10.3389/fphys.2018.00103
  • [21] M.S. Maas, Y. Alania, L.C. Natale, M.C. Rodrigues, D.C. Watts, R.R. Braga, Trends in restorative composites research: what is in the future?, Brazilian Oral Research 31/suppl. 1 (2017) e55. DOI: https://doi.org/10.1590/1807-3107BOR-2017.vol31.0055
  • [22] R. Stencel, J. Kasperski, W. Pakieła, A. Mertas, E. Bobela, I. Barszczewska-Rybarek, G. Chladek, Properties of Experimental Dental Composites Containing Antibacterial Silver-Releasing Filler, Materials 11/6 (2018) 1031. DOI: https://doi.org/10.3390/ma11061031
  • [23] M.M. Łukomska-Szymańska, J. Kleczewska, D.M. Bieliński, W. Jakubowski, J. Sokołowski, Bactericidal properties of experimental dental composites based on dimethacrylate resins reinforced by nanoparticles, European Journal of Chemistry 5/3 (2014) 419-423. DOI: https://doi.org/10.5155/eurjchem.5.3.419-423.1019
  • [24] B. Łapińska, M. Łukomska-Szymańska, J. Sokołowski, J. Nowak, Experimental composite material modified with calcium fluoride - three-point bending flexural test, Journal of Achievements in Materials and Manufacturing Engineering 74/2 (2016) 72-77. DOI: https://doi.org/10.5604/17348412.1225912
  • [25] W.P. Saunders, E.M. Saunders, Coronal leakage as a cause of failure in root-canal therapy: a review, Endodontics and Dental Traumatology 10/3 (1994) 105-108. DOI: https://doi.org/10.1111/j.1600-9657.1994.tb00533.x
  • [26] M.Q. Marashdeh, R. Gitalis, C. Levesque, Y. Finer, Enterococcus faecalis Hydrolyzes Dental Resin Composites and Adhesives, Journal of Endodontics 44/4 (2018) 609-613. DOI: https://doi.org/10.1016/j.joen.2017.12.014
  • [27] Q.-Q. Wang, C.-F. Zhang, C.-H. Chu, X.-F. Zhu, Prevalence of Enterococcus faecalis in saliva and filled root canals of teeth associated with apical periodontitis, International Journal of Oral Science 4 (2012) 19-23. DOI: https://doi.org/10.1038/ijos.2012.17
  • [28] G. Kayaoglu, D. Ørstavik, Virulence factors of Enterococcus faecalis: relationship to endodontic disease, Critical Reviews in Oral Biology and Medicine 15/5 (2004) 308-320. DOI: https://doi.org/10.1177/154411130401500506
  • [29] E. Jabłońska-Stencel, W. Pakieła, A. Mertas, E. Bobela, J. Kasperski, G. Chladek, Effect of Silver-Emitting Filler on Antimicrobial and Mechanical Properties of Soft Denture Lining Material, Materials 11/2 (2018) 318. DOI: https://doi.org/10.3390/ma11020318
  • [30] X. Xu, Q. Yang, Y. Wang, H. Yu, X. Chen, X. Jing, Biodegradable electrospun poly(l-lactide) fibers containing antibacterial silver nanoparticles, European Polymer Journal 42/9 (2006) 2081-2087. DOI: https://doi.org/10.1016/j.eurpolymj.2006.03.032
  • [31] L. Cheng, K. Zhang, C.-C. Zhou, M. D. Weir, X.-D. Zhou, H.H.K. Xu, One-year water-ageing of calcium phosphate composite containing nano-silver and quaternary ammonium to inhibit biofilms, International Journal of Oral Science 8 (2016) 172-181. DOI: https://doi.org/10.1038/ijos.2016.13
  • [32] F.Z. Cherchali, M. Mouzali, J.B. Tommasino, D. Decoret, N. Attik, H. Aboulleil, D. Seux, B. Grosgogeat, Effectiveness of the DHMAI monomer in the development of an antibacterial dental composite, Dental Materials 33/12 (2017) 1381-1391. DOI: https://doi.org/10.1016/j.dental.2017.09.004
  • [33] G.F. Rego, M.L. Vidal, G.M. Viana, L.M. Cabral, L.F.J. Schneider, M.B. Portela, L.M. Cavalcante, Antibiofilm properties of model composites containing quaternary ammonium methacrylates after surface texture modification, Dental Materials 33/10 (2017) 1149-1156. DOI: https://doi.org/10.1016/j.dental.2017.07.010
  • [34] S. Ali, L. Sangi, N. Kumar, Exploring antibacterial activity and hydrolytic stability of resin dental composite restorative materials containing chitosan, Technology and Health Care 25/1 (2017) 11-18. DOI: https://doi.org/10.3233/THC-161238
  • [35] I.M. Barszczewska-Rybarek, M.W. Chrószcz, G. Chladek, Physicochemical and mechanical properties of Bis-GMA/TEGDMA dental composite resins enriched with quaternary ammonium Polyethylenimine nanoparticles, Materials 14/8 (2021) 2037. DOI: https://doi.org/10.3390/ma14082037
  • [36] S. Tavassoli Hojati, H. Alaghemand, F. Hamze, F. Ahmadian Babaki, R. Rajab-Nia, M.B. Rezvani, M. Kaviani, M. Atai, Antibacterial, physical and mechanical properties of flowable resin composites containing zinc oxide nanoparticles, Dental Materials 29/5 (2013) 495-505. DOI: https://doi.org/10.1016/j.dental.2013.03.011
  • [37] A. Sodagar, M.S.A. Akhoundi, A. Bahador, Y.F. Jalali, Z. Behzadi, F. Elhaminejad, A.H. Mirhashemi, Effect of TiO 2 nanoparticles incorporation on antibacterial properties and shear bond strength of dental composite used in Orthodontics, Dental Press Journal of Orthodontics 22/05 (2017) 67-74. DOI: https://doi.org/10.1590/2177-6709.22.5.067-074.oar
  • [38] S. Kasraei, L. Sami, S. Hendi, M.-Y. AliKhani, L. Rezaei-Soufi, Z. Khamverdi, Antibacterial properties of composite resins incorporating silver and zinc oxide nanoparticles on Streptococcus mutans and Lactobacillus, Restorative Dentistry and Endodontics 39/2 (2014) 109-114. DOI: https://doi.org/10.5395/rde.2014.39.2.109
  • [39] X. Chatzistavrou, S. Velamakanni, K. DiRenzo, A. Lefkelidou, J.C. Fenno, T. Kasuga, A.R. Boccaccini, P. Papagerakis, Designing dental composites with bioactive and bactericidal properties, Materials Science and Engineering: C 52 (2015) 267-272. DOI: https://doi.org/10.1016/j.msec.2015.03.062
  • [40] M. Ai, Z. Du, S. Zhu, H. Geng, X. Zhang, Q. Cai, X. Yang, Composite resin reinforced with silver nanoparticles-laden hydroxyapatite nanowires for dental application, Dental Materials 33/1 (2017) 12-22. DOI: https://doi.org/10.1016/j.dental.2016.09.038
  • [41] A. Sodagar, A. Akhavan, E. Hashemi, S. Arab, M. Pourhajibagher, K. Sodagar, M.J. Kharrazifard, A. Bahador, Evaluation of the antibacterial activity of a conventional orthodontic composite containing silver/hydroxyapatite nanoparticles, Progress in Orthodontics 17 (2016) 40. DOI: https://doi.org/10.1186/s40510-016-0153-x
  • [42] L. Cheng, M.D. Weir, H.H.K. Xu, J.M. Antonucci, A.M. Kraigsley, N.J. Lin, S. Lin-Gibson, X. Zhou, Antibacterial amorphous calcium phosphate nanocomposites with a quaternary ammonium dimethacrylate and silver nanoparticles, Dental Materials 28/5 (2012) 561-572. DOI: https://doi.org/10.1016/j.dental.2012.01.005
  • [43] C. Fan, L. Chu, H.R. Rawls, B.K. Norling, H.L. Cardenas, K. Whang, Development of an antimicrobial resin - A pilot study, Dental Materials 27/4 (2011) 322-328. DOI: https://doi.org/10.1016/j.dental.2010.11.008
  • [44] Y. Qin, C. Zhu, Antimicrobial Properties of Silver-Containing Chitosan Fibers, in: S.C. Anand, J.F. Kennedy, M. Miraftab, S. Rajendran (eds.), Woodhead Publishing Series in Textiles: Medical and Healthcare Textiles, Woodhead Publishing, 2010, 7-13. DOI: https://doi.org/10.1533/9780857090348.7
  • [45] Y. Qin, Antimicrobial dressings for the management of wound infection, in: Y. Qin (ed.), Woodhead Publishing Series in Textiles: Medical Textile Materials, Woodhead Publishing, 2016, 145-160. DOI: https://doi.org/10.1016/B978-0-08-100618-4.00011-X
  • [46] G. Chladek, K. Basa, A. Mertas, W. Pakieła, J. Żmudzki, E. Bobela, W. Król, Effect of Storage in Distilled Water for Three Months on the Antimicrobial Properties of Poly(methyl methacrylate) Denture Base Material Doped with Inorganic Filler, Materials 9/5 (2016) 328. DOI: https://doi.org/10.3390/ma9050328
  • [47] Y. Kampmann, E. De Clerck, S. Kohn, D.K. Patchala, R. Langerock, J. Kreyenschmidt, Study on the antimicrobial effect of silver-containing inner liners in refrigerators, Journal of Applied Microbiology 104/6 (2008) 1808-1814. DOI: https://doi.org/10.1111/j.1365-2672.2008.03727.x
  • [48] S. Chernousova, M. Epple, Silver as antibacterial agent: ion, nanoparticle, and metal, Angewandte Chemie (International Edition) 52/6 (2013) 1636-1653. DOI: https://doi.org/10.1002/anie.201205923
  • [49] M. de los Á. Martínez-Rodríguez, E. Madla-Cruz, V.H. Urrutia-Baca, M.A. de la Garza-Ramos, V.A. González-González, M.A. Garza-Navarro, Influence of polysaccharides’ molecular structure on the antibacterial activity and cytotoxicity of green synthesized composites based on silver nanoparticles and carboxy-methyl-cellulose, Nanomaterials 10/6 (2020) 1164. DOI: https://doi.org/10.3390/nano10061164
  • [50] E. Madla-Cruz, M. De la Garza-Ramos, C.I. Romo-Sáenz, P. Tamez-Guerra, M.A. Garza-Navarro, V. Urrutia-Baca, M.A. Martínez-Rodríguez, R. Gomez-Flores, Antimicrobial activity and inhibition of biofilm formation in vitro and on human dentine by silver nanoparticles/carboxymethyl-cellulose composites, Archives of Oral Biology 120 (2020) 104943. DOI: https://doi.org/10.1016/j.archoralbio.2020.104943
  • [51] H.-H. Chang, Y.-T. Tseng, S.-W. Huang, Y.-F. Kuo, C.-L. Yeh, C.-H. Wu, Y.-C. Huang, R.-J. Jeng, J.-J. Lin, C.-P. Lin, Evaluation of Carbon Dioxide-Based Urethane Acrylate Composites for Sealers of Root Canal Obturation, Polymers 12/2 (2020) 482. DOI: https://doi.org/10.3390/polym12020482
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ed76a0c1-722c-417e-ae7f-9ec1327de3a9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.