PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The implicit numerical method for the one-dimensional anomalous subdiffusion equation with a nonlinear source term

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the paper, the numerical method of solving the one-dimensional subdiffusion equation with the source term is presented. In the approach used, the key role is played by transforming of the partial differential equation into an equivalent integro-differential equation. As a result of the discretization of the integro-differential equation obtained an implicit numerical scheme which is the generalized Crank-Nicolson method. The implicit numerical schemes based on the finite difference method, such as the Carnk-Nicolson method or the Laasonen method, as a rule are unconditionally stable, which is their undoubted advantage. The discretization of the integro-differential equation is performed in two stages. First, the left-sided Riemann-Liouville integrals are approximated in such a way that the integrands are linear functions between successive grid nodes with respect to the time variable. This allows us to find the discrete values of the integral kernel of the left-sided Riemann-Liouville integral and assign them to the appropriate nodes. In the second step, second order derivative with respect to the spatial variable is approximated by the difference quotient. The obtained numerical scheme is verified on three examples for which closed analytical solutions are known.
Rocznik
Strony
art. no. e138240
Opis fizyczny
Bibliogr. 20 poz., il., tab.
Twórcy
  • Institute of Mathematics, Czestochowa University of Technology, al. Armii Krajowej 21, 42-201 Czestochowa, Poland
Bibliografia
  • [1] T. Kosztołowicz, K. Dworecki, and S. Mrówczy´nski, “How to measure subdiffusion parameters,” Phys. Rev. Lett., vol. 94, p. 170602, 2005, doi: 10.1016/j.tins.2004.10.007.
  • [2] T. Kosztołowicz, K. Dworecki, and S. Mrówczy´nski, “Measuring subdiffusion parameters,” Phys. Rev. E, vol. 71, p. 041105, 2005.
  • [3] E. Weeks, J. Urbach, and L. Swinney, “Anomalous diffusion in asymmetric random walks with a quasi-geostrophic flow example, Physica D, vol. 97, pp. 291-310, 1996.
  • [4] T. Solomon, E. Weeks, and H. Swinney, “Observations of anomalous diffusion and Lévy flights in a 2-dimensional rotating flow,” Phys. Rev. Lett., vol. 71, pp. 3975-3979, 1993.
  • [5] N. E. Humphries, et al., “Environmental context explains Lévy and Brownian movement patterns of marine predators,” Nature, vol. 465, pp. 1066-1069, 2010.
  • [6] U. Siedlecka, “Heat conduction in a finite medium using the fractional single-phase-lag model,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 67, pp. 402-407, 2019.
  • [7] R. Metzler and J. Klafter, “The random walk:s guide to anomalous diffusion: a fractional dynamics approach,” Phys. Rep., vol. 339, pp. 1-77, 2000.
  • [8] R. Metzler and J. Klafter, “The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics,” J. Phys. A: Math. Gen., vol. 37, pp. 161-208, 2004.
  • [9] M. Aslefallah, S. Abbasbandy, and E. Shivanian, “Numerical solution of a modified anomalous diffusion equation with nonlinear source term through meshless singular boundary method,” Eng. Anal. Boundary Elem., vol. 107, pp. 198–207, 2019.
  • [10] Y. Li and D. Wang, “Improved efficient difference method for the modified anomalous sub-diffusion equation with a nonlinear source term,” Int. J. Comput. Math., vol. 94, pp. 821–840, 2017.
  • [11] X. Cao, X. Cao, and L. Wen, “The implicit midpoint method for the modified anomalous sub-diffusion equation with a nonlinear source term,” J. Comput. Appl. Math., vol. 318, pp. 199-210, 2017.
  • [12] A. Kilbas, H. Srivastava, and J. Trujillo, Theory and Applications of Fractional Differential Equations. Amsterdam: Elsevier, 2006.
  • [13] E.D. Rainville, Special Functions. New York: The Macmillan Company, 1960.
  • [14] J.-L. Liu and H.M. Srivastava, „Classes of meromorphically multivalent functionas associated with the generalized hypergeometric function,” Math. Comput. Modell., vol. 39, pp. 21-34, 2004.
  • [15] Y.L. Luke, „Inequalities for generalized hypergeometric functionas,” J. Approximation Theory, vol. 5, pp. 41-65, 1972.
  • [16] M. Włodarczyk and A. Zawadzki, „the application of hypergeometric functions to computing fractional order derivatives of sinusoidal functions,” Bull. Pol. Acad. Sci., vol. 64, pp. 243-248, 2016.
  • [17] M. Błasik, „A generalized Cranc-Nicolson method for the solution of the subdifuusion equation,” 23rd International Conference on Methods & Models in Automation & Robotics (MMAR), pp. 726-729, 2018.
  • [18] M. Błasik, „Zagadnienie stefana niecałkowitego rzędu,” Ph. D. dissertation, Politechnika Częstochowska, 2013.
  • [19] M. Błasik and M. Klimek, „Numerical solution of the one phase 1d fractional stefan problem using the front fixing method,” Math. Methods Appl. Sci., vol. 38, no. 15, pp. 3214-3228, 2015.
  • [20] K. Diethelm, The Analysis of Fractional Differential Equations. Berlin: Springer-Verlag, 2010.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ed75ca4c-6939-410e-b4a6-fed054851954
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.