PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Active flux based adaptive and non-adaptive observer for sensorless interior permanent magnet synchronous machine drive

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The use of the interior permanent magnet synchronous machine (IPMSM) drive has profoundly increased in a large number of applications due to numerous advantages. Owing to the disadvantages of mechanical sensors, sensorless control techniques are employed to enhance the performance of the IPMSM drive by removing the effect of noise and gain drift due to the sensor, increasing reliability, cost saving, and reducing overall size. This article presents the comparative analysis between the adaptive observer and non-adaptive extended electromotive force (EEMF) observer based on the active flux concept in a stationary reference frame (α–β). Moreover, the effect of slot harmonics and non-sinusoidal distribution of rotor flux is present in the three-phase IPMSM, this problem is considered as the control system disturbances in this article. Due to the non-sinusoidal distribution of flux and slot harmonics, the observer structure in the rotating reference frame (d–q) fails to estimate at the low-speed operation range. Comparative analysis between adaptive and non-adaptive observer structures is provided for a wide speed range. The effectiveness of the observer structures is examined using the classical field-oriented control scheme. In the end, simulation and experimental results are demonstrated to validate the performance of the sensorless control scheme using the adaptive and non-adaptive observer structures for the three-phase IPMSM drive setup.
Rocznik
Strony
799--815
Opis fizyczny
Bibliogr. 26 poz., fot., rys., tab., wykr., wz.
Twórcy
autor
  • Faculty of Electrical and Control Engineering, Gdańsk University of Technology, 11/12 Narutowicza str., 80-233 Gdańsk, Poland
  • Faculty of Electrical and Control Engineering, Gdańsk University of Technology, 11/12 Narutowicza str., 80-233 Gdańsk, Poland
autor
  • Faculty of Electrical and Control Engineering, Gdańsk University of Technology, 11/12 Narutowicza str., 80-233 Gdańsk, Poland
autor
  • Faculty of Electrical and Control Engineering, Gdańsk University of Technology, 11/12 Narutowicza str., 80-233 Gdańsk, Poland
  • Faculty of Electrical and Control Engineering, Gdańsk University of Technology, 11/12 Narutowicza str., 80-233 Gdańsk, Poland
Bibliografia
  • [1] Wang G., Valla M., Solsona J., Position sensorless permanent magnet synchronous machine drives – A review, IEEE Transactions on Industrial Electronics, vol. 67, no. 7, pp. 5830–5842 (2020), DOI: 10.1109/TIE.2019.2955409.
  • [2] Ogbuka C., Nwosu C., Agu M., Dynamic and steady state performance comparison of line-start permanent magnet synchronous motors with interior and surface rotor magnets, Archives of Electrical Engineering, vol. 65, no. 1, pp. 105–116 (2016), DOI: 10.1515/AEE-2016-0008.
  • [3] Mlot A., Kowol M., Kolodziej J., Lechowicz A., Skrobotowicz P., Analysis of IPM motor parameters in an 80-kW traction motor, Archives of Electrical Engineering, vol. 69, no. 2, pp. 467–481 (2020), DOI: 10.24425/aee.2020.133038.
  • [4] Ryndzionek R., Blecharz K., Kutt F., Michna M., Kostro G., Fault-Tolerant Performance of the Novel Five-Phase Doubly-Fed Induction Generator, IEEE Access, vol. 10, pp. 59350–59358 (2022), DOI: 10.1109/ACCESS.2022.3179815.
  • [5] Młot A., Korkosz M., Lechowicz A., Podhajecki J., Rawicki S., Electromagnetic analysis, efficiency map and thermal analysis of an 80-kW IPM motor with distributed and concentrated winding for electric vehicle applications, Archives of Electrical Engineering, vol. 71, no. 4, pp. 981–1002 (2022), DOI: 10.24425/aee.2022.142120.
  • [6] Brock S., Pajchrowski T., Sensorless and energy-efficient PMSM drive for fan application, in Archives of Electrical Engineering, vol. 62, no. 2, pp. 217–225 (2013), DOI: 10.2478/aee-2013-0017.
  • [7] Li Y., Hu H., Shi P., A Review of Position Sensorless Compound Control for PMSM Drives, World Electric Vehicle Journal, vol. 14, no. 2, MDPI (2023), DOI: 10.3390/wevj14020034.
  • [8] Tang M., Wang C., Luo Y., Predictive current control for permanent magnet synchronous motor based on internal model control observer, Archives of Electrical Engineering, vol. 71, no. 2, pp. 343–362 (2022), DOI: 10.24425/aee.2022.140715.
  • [9] Navaneethan S., Kanthalakshmi S., Aandrew Baggio S., Lyapunov stability based sliding mode observer for sensorless control of permanent magnet synchronous motor, Bulletin of the Polish Academy of Sciences: Technical Sciences, vol. 70, no. 2 (2022), DOI: 10.24425/bpasts.2022.140353.
  • [10] Morawiec M., Lewicki A., Odeh C., Rotor-Flux Vector based Observer of Interior Permanent Synchronous Machine, IEEE Transactions on Industrial Electronics (2023), DOI: 10.1109/TIE.2023. 3250851.
  • [11] Choi J., Nam K., Bobtsov A., Ortega R., Sensorless Control of IPMSM Based on Regression Model, IEEE Trans. on Power Electron., vol. 34, no. 9, pp. 9191–9201 (2019), DOI: 10.1109/TPEL.2018.2883303.
  • [12] Volpato Filho C., Vieira P., Adaptive Full-Order Observer Analysis and Design for Sensorless Interior Permanent Magnet Synchronous Motors Drives, IEEE Transactions on Industrial Electronics, vol. 68, no. 8, pp. 6527–6536 (2021), DOI: 10.1109/TIE.2020.3007101.
  • [13] Zhang T., Xu Z., Li J., Zhang H., Gerada C., A third-order super-twisting extended state observer for dynamic performance enhancement of sensorless IPMSM drives, IEEE Transactions on Industrial Electronics, vol. 67, no. 7, pp. 5948–5958 (2020), DOI: 10.1109/TIE.2019.2959498.
  • [14] Xu Z., Zhang T., Bao Y., Zhang H., Gerada C., A nonlinear extended state observer for rotor position and speed estimation for sensorless IPMSM Drives, IEEE Trans. on Power Electron., vol. 35, no. 1, pp. 733–743 (2020), DOI: 10.1109/TPEL.2019.2914119.
  • [15] Woldegiorgis A., Ge X., Wang H., Hassan M., A New Frequency Adaptive Second-Order Disturbance Observer for Sensorless Vector Control of Interior Permanent Magnet Synchronous Motor, IEEE Transactions on Industrial Electronics, vol. 68, no. 12, pp. 11847–11857 (2021), DOI: 10.1109/TIE.2020.3047065.
  • [16] Woldegiorgis A., Ge X., Li S., Hassan M., Extended Sliding Mode Disturbance Observer-Based Sensorless Control of IPMSM for Medium and High-Speed Range Considering Railway Application, IEEE Access, vol. 7, pp. 175302–175312 (2019), DOI: 10.1109/ACCESS.2019.2957274.
  • [17] Xiao D., Nalakath S., Sun Y., Wiseman J., Emadi A., Complex-coefficient adaptive disturbance observer for position estimation of IPMSMs with robustness to DC Errors, IEEE Transactions on Industrial Electronics, vol. 67, no. 7, pp. 5924–5935 (2020), DOI: 10.1109/TIE.2019.2941157.
  • [18] Zhang Y., Yin Z., Bai C., Wang G., Liu J., A Rotor Position and Speed Estimation Method Using an Improved Linear Extended State Observer for IPMSM Sensorless Drives, IEEE Trans. On Power Electron., vol. 36, no. 12, pp. 14062−14073 (2021), DOI: 10.1109/TPEL.2021.3085126.
  • [19] Krishnan R., Permanent magnet synchronous and brushless DC motor drives, CRC Press/Taylor & Francis (2010), DOI: 10.1201/9781420014235.
  • [20] Wang G., Zhang G., Xu D., Position Sensorless Control Techniques for Permanent Magnet Synchronous Machine Drives, Springer (2020), DOI: 10.1007/978-981-15-0050-3.
  • [21] Boldea I., Paicu M., Andreescu G., Active flux concept for motion-sensorless unified AC drives, IEEE Trans Power Electron, vol. 23, no. 5, pp. 2612–2618 (2008), DOI: 10.1109/TPEL.2008.2002394.
  • [22] Boldea I., Paicu M., Andreescu G., Blaabjerg F., ‘Active Flux’ DTFC-SVM sensorless control of IPMSM, IEEE Transactions on Energy Conversion, vol. 24, no. 2, pp. 314–322 (2009), DOI: 10.1109/TEC.2009.2016137.
  • [23] Morawiec M., Blecharz K., Non-adaptive Speed and Position Estimation of Doubly-Fed Induction Generator in Grid-Connected Operations, IEEE Transactions on Industrial Electronics (2023), DOI: 10.1109/TIE.2023.3279548.
  • [24] Kim J., Doki S., Ishida M., Improvement of IPMSM sensorless control performance by suppression of harmonics on the vector control using Fourier transform and repetitive control, IEEE 2002 28th Annual Conference of the Industrial Electronics Society, IECON 02, Seville, Spain, vol. 1, pp. 597–602 (2002), DOI: 10.1109/IECON.2002.1187575.
  • [25] Mao Y., Yang J., Yin D., Chen Y., Sensorless IPMSM control based on an extended nonlinear observer with rotational inertia adjustment and equivalent flux error compensation, Journal of Power Electronics, vol. 16, no. 6, pp. 2150–2161 (2016), DOI: 10.6113/JPE.2016.16.6.2150.
  • [26] Sul S., Kwon Y., Lee Y., Sensorless Control of IPMSM for Last 10 Years and Next 5 Years, CES Transactions on Electrical Machines and Systems, vol. 1, no. 2, pp. 91–99 (2017), DOI: 10.23919/TEMS.2017.7961290.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ed757541-d562-4680-8cea-bacbc2b74c4a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.