PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modified Ginstling–Brounshtein model for wet precipitation synthesis of hydroxyapatite: analytical and experimental study

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Hydroxyapatite is the main mineral component in bones and teeth, thus being an important material in bone tissue engineering, e.g., for replacement and elimination of defects. Hydroxyapatite is widely used in real-life applications due to excellent biocompatibility and bioactivity. Wet precipitation synthesis of hydroxyapatite is limited by diffusivity. Hence, choice of a diffusion model becomes critical. The purpose of this work is three-fold. It experimentally validates the use of Ginstling–Brounshtein model for hydroxyapatite synthesis. It determines the effect of Ca(OH)2 concentration on the kinetics and reports a modified model to account for this phenomenon. It reports obtained kinetic constants that describe hydroxyapatite synthesis. Methods: Particle size was determined using scanning electron microscopy and digital microscopy. Conversion kinetics were monitored using powder X-ray diffraction. Results: Experimental validation was provided. Furthermore, the process was found dependent on the calcium hydroxide concentration and the model was modified to account for this phenomenon. Kinetic constants describing the synthesis of hydroxyapatite were obtained and reported. Conclusions: The model was well consistent with the experimental data and can be used for describing synthesis of hydroxyapatite for various suspension concentrations.
Rocznik
Strony
47--57
Opis fizyczny
Bibliogr. 25 poz., rys., tab., wykr.
Twórcy
  • Department of Mechanical and Industrial Engineering, Norwegian University of Science and Technology, Trondheim, Norway
  • Institute of General Chemical Engineering, Riga Technical University, Riga, Latvia
  • Institute of General Chemical Engineering, Riga Technical University, Riga, Latvia
autor
  • Institute of General Chemical Engineering, Riga Technical University, Riga, Latvia
Bibliografia
  • [1] AFSHAR A., GHORBANI M., EHSANI N., SAERI M.R., SORRELL C.C., Some important factors in the wet precipitation process of hydroxyapatite, Mater. Des., 2003, 24(3), 197–202.
  • [2] BĒRZIŅA-CIMDIŅA L., DREIJERS I., KREICBERGS I., Hypothesis of Ca(OH)2 and H3PO4 reaction mechanism on solid particle surface, International Forum of Young Researchers “Topical Issues of Subsoil Usage”, St. Petersburg, Russia, Apr. 20–22, 2011.
  • [3] BLANTON T.N., BARNES C.L., D-75 Quantitative analysis of calcium oxide desiccant conversion to calcium hydroxide using X-ray diffraction, Powder Diffr., 2004, 19(2), 45–51.
  • [4] BRUNDAVANAM R.K., POINERN G.E.J., FAWCETT D., Modelling the crystal structure of a 30 nm sized particle based hydroxyapatite powder synthesised under the influence of ultrasound irradiation from X-ray powder diffraction data, Am. J. Mater. Sci., 2013, 3(4), 84–90.
  • [5] GAO P., WANG H., JIN Z., Study of oxidation properties and decomposition kinetics of three-dimensional (3-D) braided carbon fiber, Thermochim. Acta, 2004, 414(1), 59–63.
  • [6] GINSTLING A.M, BROUNSHTEIN B.I., О диффузионной кинетике реакций в сферических частицах, Журнал прикладной химии, 1950, 23(12), 1249–1259 (in Russian).
  • [7] HENCH L.L., JONES J.R., Biomaterials, artificial organs and tissue engineering, 1st ed., Woodhead Publishing, Cambridge, 2005.
  • [8] HOU C.H., HOU S.M., HSUEH Y.S., LIN J., WU H.C., LIN F.H., The in vivo performance of biomagnetic hydroxyapatite nanoparticles in cancer hyperthermia therapy, Biomaterials, 2009, 30(23–24), 3956–3960.
  • [9] JAIN A., JOSEPH K., ANTHONYSAMY S., GUPTA G.S., Kinetics of oxidation of boron powder, Thermochim. Acta, 2011, 514(1–2), 67–73.
  • [10] KHACHANI M., EL HAMIDI A., KACIMI M., HALIM M., ARSALANE S., Kinetic approach of multi-step thermal decomposition processes of iron(III) phosphate dihydrate FePO4·2H2O, Thermochim. Acta, 2015, 610, 29–36.
  • [11] KIM D.W., CHO I.-S., KIM J.Y., JANG H.L., HAN G.S., RYU H.-S., SHIN H., JUNG. H.S., KIM H., HONG K.S., Simple large-scale synthesis of hydroxyapatite nanoparticles: in situ observation of crystallization process, Langmuir, 2009, 26(1), 384–388.
  • [12] KRAUKLIS A.E., DREYER I., A Simplistic Preliminary Assessment of Ginstling–Brounshtein Model for Solid Spherical Particles in the Context of a Diffusion-Controlled Synthesis, Open Chem., 2018, 16(1), 64–72.
  • [13] MESKI S., ZIANI S., KHIREDDINE H., Removal of lead ions by hydroxyapatite prepared from the egg shell, J. Chem. Eng. Data, 2010, 55(9), 3923–3928.
  • [14] OZOLA R., KRAUKLIS A., BURLAKOVS J., VINCEVICA-GAILE Z., RUDOVICA V., TRUBACA-BOGINSKA A., BOROVIKOVA D., BHATNAGAR A., VIRCAVA I., KLAVINS M., Illite clay modified with hydroxyapatite – innovative perspectives for soil remediation from lead (II), Int. J. Agric. Environ. Res. (IJAER), 2017, 3(2), 177–189.
  • [15] PTÁČEK P., NOSKOVÁ M., BRANDŠTETR J., ŠOUKAL F., OPRAVIL T., Mechanism and kinetics of wollastonite fibre dissolution in the aqueous solution of acetic acid, Powder Technol., 2011, 206(3), 338–344.
  • [16] QIFENG S., JIAYUN Z., BAIJUN Y., JIANHUA L., Phase formation mechanism and kinetics in solid-state synthesis of undoped and calcium-doped lanthanum manganite, Mater. Res. Bull., 2009, 44(3), 649–653.
  • [17] SADAT-SHOJAI M., KHORASANI M.-T., DINPANAH-KHOSHDARGI E., JAMSHIDI A., Synthesis methods for nanosized hydroxyapatite with diverse structures, Acta Biomater., 2013, 9(8), 7591–7621.
  • [18] SHAOXIAN Z., ZHIXIONG Y., PING L., GUANGHONG X., WANPENG C., Hydroxyapatite/Al2O3 composite biomaterial implant, Mater. Res. Soc. Symp. Proc., 1992, 292.
  • [19] SOKOLOVA M., PUTNIŅŠ A., KREICBERGS I., The impact of mixing and Ca(OH)2 suspension concentration on hydroxyapatite synthesis, Riga Technical University 53rd International Scientific Conference, Riga, Latvia, Oct. 10–12, 2012, RTU Alumni: Digest, Riga, 2012.
  • [20] SOUNDRAPANDIAN C., BHARATI S., BASU D., DATTA S., Studies on novel bioactive glasses and bioactive glass-nanoHAp composites suitable for coating on metallic implants. Ceram. Int., 2011, 37(3), 759–769.
  • [21] TUDORACHI N., MUSTATA F., Curing and thermal degradation of diglycidyl ether of bisphenol A epoxy resin crosslinked with natural hydroxy acids as environmentally friendly hardeners, Arabian J. Chem., (in press), DOI: 10.1016/j.arabjc.2017.07.008.
  • [22] VALLET-REGÍ M., GONZÁLES-CALBET J.M., Calcium phosphates as substitution of bone tissues, Prog. Solid State Chem., 2004, 32(1–2), 1–31.
  • [23] VISWANATH B., RAVISHANKAR N., Controlled synthesis of plate-shaped hydroxyapatite and implications for the morphology of the apatite phase in bone, Biomaterials, 2008, 29(36), 4855–4863.
  • [24] WIONCZYK B., APOSTOLUK W., CHAREWICZ W.A., ADAMSKI Z., Recovery of chromium(III) from wastes of uncolored chromium leathers. Part I. Kinetic studies on alkaline hydrolytic decomposition of the wastes, Sep. Purif. Technol., 2011, 81(2), 223–236.
  • [25] ZAHOUILY M., ABROUKI Y., BAHLAOUAN B., RAYADH A., SEBTI S., Hydroxyapatite: new efficient catalyst for the Michael addition, Catal. Commun., 2003, 4(10), 521–524.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ed6e4e8e-c0b4-44e2-87d5-63775f2af93d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.