PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

On the existence of optimal consensus control for the fractional Cucker-Smale model

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper addresses the nonlinear Cucker-Smale optimal control problem under the interplay of memory effect. The aforementioned effect is included by employing the Caputo fractional derivative in the equation representing the velocity of agents. Sufficient conditions for the existence of solutions to the considered problem are proved and the analysis of some particular problems is illustrated by two numerical examples.
Rocznik
Strony
625--651
Opis fizyczny
Bibliogr. 39 poz., rys., wykr., wzory
Twórcy
autor
  • Center for Research and Development in Mathematics and Applications (CIDMA), Department of Mathematics, University of Aveiro, 3810-193 Aveiro, Portugal
autor
  • Faculty of Mathematics and Computer Science, University of Lodz, 90-238 Łódź, Poland
  • Faculty of Computer Science, Bialystok University of Technology, 15-351 Białystok, Poland
  • Department of Mathematics and Mathematical Economics, SGH Warsaw School of Economics, 02-554 Warsaw, Poland
Bibliografia
  • [1] W. M. Ahmad and R. El-Khazali: Fractional-order dynamical models of love, Chaos Solitons Fractals, 33, 1367–1375 (2007).
  • [2] E. Ahmeda and A. Elgazzar: On fractional order differential equations model for nonlocal epidemics, Phys. A, 379, 607–614 (2007).
  • [3] R. Almeida, R. Kamocki, A. B. Malinowska, and T. Odzijewicz: Optimal leader-following consensus of fractional opinion formation models, J. Comput. Appl. Math., 381, DOI:10.1016/j.cam.2020.112996.
  • [4] R. Bailo, M. Bongini, J. A. Carrillo, and D. Kalise: Optimal consensus control of the Cucker–Smale model, IFAC PapersOnLine, 51(13) 1–6(2018).
  • [5] L. Bourdin: Existence of a weak solution for fractional Euler-Lagrange equations, J. Math. Anal. Appl., 399, 239–251 (2013).
  • [6] F. Bozkurt, T. Abdeljawad, and M. A. Hajji: Stability analysis of a fractional order differential equation model of a brain tumor growth depending on the density, Appl Comput Math., 14(1), 50–62 (2015).
  • [7] S. Camazine, J.-L. Deneubourg, N. R. Franks, J. Sneyd, G. Theraula, and E. Bonabeau: Self-Organization in Biological Systems, Princeton University Press, 2003.
  • [8] M. Caponigro, M. Fornasier, B. Piccoli, and E. Trelat: Sparse stabilization and optimal control of the Cucker–Smale model, Math. Cont. Related Fields AIMS, 3(4), 447–466 (2013).
  • [9] A. Chakraborti: Distributions of money in models of market economy, Int. J. Modern Phys. C, 13, 1315–1321 (2002).
  • [10] F. Cucker and S. Smale: On the mathematics of emergence, Japan. J. Math., 2, 197–227, (2007).
  • [11] F. Cucker and S. Smale: Emergent Behavior in Flocks, IEEE Trans. Autom. Control, 52(5), 852–862 (2007).
  • [12] F. Cucker and J.-G. Dong: Avoiding collisions in flocks, IEEE Trans. Autom. Contr., 55(5), 1238–1243 (2010).
  • [13] F. Cucker and C. Huepe: Flocking with informed agents, MathS In Action, 1, 1–25 (2008).
  • [14] F. Cucker and E. Mordecki: Flocking in noisy environments, Journal de Mathematiques Pures et Appliques, 89(3), 278–296 (2008).
  • [15] G. Cottone, M. Paola, and R. Santoro: A novel exact representation of stationary colored Gaussian processes (fractional differential approach), J. Phys. A, 43, 085002 (2010).
  • [16] F. Dalmao and E. Mordecki: Cucker-Smale Flocking Under Hierarchical Leadership and Random Interactions, SIAM J. Appl. Math., 71(4), 1307–1316 (2011).
  • [17] F. Dalmao and E. Mordecki: Hierarchical Cucker-Smale model subject to random failure, IEEE Trans. on Autom. Control, 57(7), 1789–1793 (2012).
  • [18] S. Galam, Y. Gefen, and Y. Shapir: Sociophysics: a new approach of sociological collective behavior, J. Math. Sociology, 9, 1–13 (1982).
  • [19] E. Girejko, D. Mozyrska, and M. Wyrwas: Numerical analysis of behaviour of the Cucker-Smale type models with fractional operators, J. Comput. Appl. Math., 339, 111–123 (2018).
  • [20] E. Girejko, D. Mozyrska, and M. Wyrwas: On the fractional variable order Cucker-Smale type model, IFAC-PapersOnLine, 51, 693–697 (2018).
  • [21] S. Y. Ha, T. Ha, and J. H. Kim: Emergent behavior of a Cucker–Smale type particle model with nonlinear velocity couplings, IEEE Trans. Automat. Control, 55(7), 1679–1683 (2010).
  • [22] S.-Y. Ha, J., Jung, and P. Kuchling: Emergence of anomalous flocking in the fractional Cucker-Smale model, Discrete Contin. Dyn. Syst., Ser. A, 39(9), 5465–5489 (2019).
  • [23] S. Y. Ha and J. G. Liu: A simple proof of the Cucker–Smale flocking dynamics and mean-field limit, Commun. Math. Sci.,7(2), 297–325 (2009).
  • [24] A. Jadbabaie, J. Lin, and A. S. Morse: Coordination of groups of mobile autonomous agents using nearest neighbor rules, IEEE Trans. on Autom. Control, 48, 988–1001 (2003).
  • [25] W. Jakowluk: Free Final Time Input Design Problem for Robust Entropy-Like System Parameter Estimation, Entropy, 20(7), 528 (2018).
  • [26] R. Kamocki: Pontryagin maximum principle for fractional ordinary optimal control problems, Math. Methods Appl. Sci., 37(11), 1668–1686 (2014).
  • [27] A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo: Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006.
  • [28] V. P. Latha, F. A. Rihan, R. Rakkiyappan, and G. Velmurugan: A fractional-order model for Ebola virus infection with delayed immune response on heterogeneous complex networks, J. Comput. Appl. Math., 339, 134–146 (2018).
  • [29] M. W. Michalski: Derivatives of noninteger order and their applications, Dissertations Mathematicae (Rozprawy Mat.), 328, 47 pp. (1993).
  • [30] R. Olfati–Saber: Flocking for multi-agent dynamics systems algorithms and theory, IEEE Trans. on Autom. Control, 51(3), 401–420 (2006).
  • [31] W. Ren, R. W. Beard, and E. M. Arkins: Information consensus in multi-vehicle cooperative control, IEEE Contr. Syst. Mag., 71(2), 71–82, (2007).
  • [32] S. G. Samko, A. A. Kilbas, and O. I. Marichev: Fractional Integrals and Derivatives Theory and Applications, Gordon and Breach: Amsterdam, 1993.
  • [33] J. Shen: Cucker-Smale flocking under hierarchical leadership, SIAM J. Appl. Math., 68, 694–719 (2007).
  • [34] L. Song, S. Y. Xu, and J. Y. Yang: Dynamical models of happiness with fractional order, Commun. Nonlinear Sci. Numer. Simul.,15, 616–628 (2010).
  • [35] H. G. Sun, Y. Zhang, D. Baleanu, W. Chen, and Y. Q. Chen: A new collection of real world applications of fractional calculus in science and engineering, Commun. Nonlinear Sci. Numer. Simul., 64, 213–231 (2018).
  • [36] K. Sznajd-Weron and J. Sznajd: Opinion evolution in closed community, Int. J. Mod. Phys. C, 11, 1157–1165 (2000).
  • [37] L. Vazquez: A fruitful interplay: from nonlocality to fractional calculus, Nonlinear Waves: Classical and Quantum Aspects, NATO Sci. Ser. II Math. Phys. Chem.,153, 129–133 (2005).
  • [38] T. Vicsek, A. Czirok, E. Ben-Jacob, and O. Shochet: Novel type of phase transition in a system of self-driven particles, Phys. Rev. Letters, 75, 1226–1229 (1995).
  • [39] H. Ye, J. Gao, and Y. Ding: A generalized Gronwall inequality and its application to a fractional differential equation, J. Math. Anal. Appl., 328, 1075–1081 (2007).
Uwagi
R. Almeida was supported by Portuguese funds through the CIDMA - Center for Research and Development in Mathematics and Applications, and the Portuguese Foundation for Science and Technology (FCT-Fundação para a Ciência e a Tecnologia), within project UIDB/04106/2020. A. B. Malinowska was supported by the Bialystok University of Technology Grant, financed from a subsidy provided by the Minister of Science and Higher Education and T. Odzijewicz by the SGH Warsaw School of Economics grant KAE/DB/20.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ed6de0cc-5587-4847-8248-ad78042e1553
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.