PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of rotating magnetic field on gas-liquid volumetric mass transfer coefficient

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The main objective of these experiments was to study the oxygen mass transfer rate through the volumetric mass transfer coefficient (kLa) for an experimental set-up equipped with a rotating magnetic field (RMF) generator and various liquids. The experimental results indicated that kLa increased along the magnetic strength and the superficial gas velocity. Mathematical correlations defining the influence of the considered factors on kLa were proposed.
Rocznik
Strony
423--432
Opis fizyczny
Bibliogr. 37 poz., rys.
Twórcy
autor
  • West Pomeranian University of Technology, Szczecin, Faculty of Chemical Engineering, Institute of Chemical Engineering and Environmental Protection Processes, al. Piastów 42, 71-065 Szczecin, Poland
autor
  • West Pomeranian University of Technology, Szczecin, Faculty of Chemical Engineering, Institute of Chemical Engineering and Environmental Protection Processes, al. Piastów 42, 71-065 Szczecin, Poland
autor
  • West Pomeranian University of Technology, Szczecin, Faculty of Chemical Engineering, Institute of Chemical Engineering and Environmental Protection Processes, al. Piastów 42, 71-065 Szczecin, Poland
Bibliografia
  • 1. Al-Qodah Z., Al-Hassan M., 2000. Phase holdup and gas-to-liquid mass transfer coefficient in magneto stabilized G-L-S airlift fermenter. Chem. Eng. J., 79, 41-52. DOI: 10.1016/S1385-8947(00)00142-X.
  • 2. Anton-Leberre V., Haanappel E., Marsaud N., Trouilh L., Benbadis L., Boucherie H., 2010. Exposure to high static or pulsed magnetic fields does not affect cellular processes in the yeast Saccharomyces cerevisiae. Bioelectromagnetics, 31, 28-38. DOI: 10.1002/bem.20523.
  • 3. Chen C.M., Leu L.P., 2001. Hydrodynamics and mass transfer in three-phase magnetic fluidized beds. Powder Technol., 117, 198-206. DOI: 10.1016/S0032-5910(00)00370-3.
  • 4. Chisti M.Y., 1989. Airlift Bioreactors. Elsevier, New York, USA.
  • 5. Chisti M.Y., Jauregui-Haza U.J., 2002. Oxygen transfer and mixing in mechanically agitated airlift bioreactors. Biochem. Eng. J., 10, 143-153. DOI: 10.1016/S1369-703X(01)00174-7.
  • 6. Ciechańska D., Struszczyk H., Gruzińska K., 1998. Modification of Bacterial Cellulose. Fibres Text. East. Eur., 6, 61-65.
  • 7. El-Gaddar A., Frénéa-Robin M., Voyer D., Aka H., Haddour N., Krähenbühl L., 2013. Assesment of 0.5 T static files exposure effect on yeast and HEK cells using electrorotation. Biophys. J. 104, 1805-1811. DOI: 0.1016/j.bpj.2013.01.063.
  • 8. Fabian A.C., 2002. Bubbles, flows and fields. Science, 296, 1040-1041. DOI: 10.1126/science.1072074.
  • 9. Fijałkowski K, Żywicka A., Drozd R., Niemczyk A., Junka A. F., Peitler D., Kordas M., Konopacki M., Szymczyk P., El Fray M., Rakoczy R., 2015. Modification of bacterial cellulose through exposure to the rotating magnetic field. Carbohyd. Polym., 133, 52-60. DOI: 10.1016/j.carbpol.2015.07.011.
  • 10. Gaafar E.S.A., Hanafy M.S., Tohamy E.Y., Ibranhim M.H., 2008. The effect of electromagnetic field on protein molecular structure of E. Coli and its pathogenesis. Rom. J. Biophys., 18, 145-169.
  • 11. Galaction A.-I., Dan C., Comelin O., Marius T., 2004a. Enhancement of oxygen mass transfer in stirred bioreactors using oxygen-vectors: 1. Simulated fermentation broths. Bioproc. Biosyst. Eng., 26, 231-238. DOI: 10.1007/s00449-004-0353-5.
  • 12. Galaction A.-I., Cascaval D., Oniscu C., Turnea M., 2004b. Prediction of oxygen mass transfer coefficients in stirred bioreactors for bacteria, yeasts and fungus broths. Biochem. Eng. J., 20, 85-94. DOI: 10.1016/j.bej.2004.02.005.
  • 13. Garcia-Ochoa F., Gomez E., 2009. Bioreactor scale-up and oxygen transfer rate in microbial processes: An overview. Biotechnol Adv., 27, 153-176. DOI: 10.1016/j.biotechadv.2008.10.006.
  • 14. Gorobets S.V., Yu G.O., Demianeneko I.V., Nikolaenko R.N., 2013. Self-organization of magnetic nanoparticles in providing Saccharomyces cerevisiae yeasts with magnetic properties. J. Magn. Magn. Mater., 337-338, 53-57. DOI: 10.1016/j.jmmm.2013.01.004.
  • 15. Hajiani P., Larachi F., 2013a. Remotely excited magnetic nanoparticles and gas–liquid mass transfer in Taylor flow regime. Chem. Eng. Sci., 93, 257-265. DOI:10.1016/j.ces.2013.01.052.
  • 16. Hajiani P., Larachi F., 2013b. Giant effective liquid-self diffusion in stagnant liquids by magnetic nanomixing. Chem. Eng. Process., 71, 77-82. DOI: 10.1016/j.cep.2013.01.014.
  • 17. Heim, A., Kraslawski, A., Rzyski, E., Stelmach, J., 1995. Aeration of bioreactors by self-aspirating impellers. Chem. Eng. J. Bioch. Eng., 58, 59-63. DOI:10.1016/0923-0467(94)06093-2.
  • 18. Hristov J., 2010. Magnetic field assisted fluidization - A unified approach. Part 8. Mass Transfer: Magnetically assisted bioprocesses. Rev. Chem. Eng., 26, 55-128. DOI: 10.1515/REVCE.2010.006.
  • 19. Hristov J., Perez V.H., 2011. Critical analysis of data concerning Saccharomyces cerevisiae free-cell proliferations and fermentations assisted by magnetic and electromagnetic fields. Int. Rev. Chem. Eng., 3, 3-20.
  • 20. Iwasaka M., Ikchata M., Miyakoskhi, Ueno S., 2004. Strong static magnetic field effects on yeast proliferation and distribution. Bioelectrochemistry, 65, 59-68. DOI: 10.1016/j.bioelechem.2004.04.002.
  • 21. Karimi A., Golbabaei F., Mehrnia M. R., Neghab M., Mohhamad K., Nikpey A., Pourmand M. R., 2013. Oxygen mass transfer in a stirred tank bioreactor using different impeller configurations for environmental purposes. Iran. J. Environ. Healt., 10, 6. DOI: 10.1186/1735-2746-10-6.
  • 22. Kitazawa K., Ikezoe Y., Uetake H., Hirota N., 2001. Magnetic field effects on water, air and powder. Physica B, 294-295, 709-714. DOI: 10.1016/S0921-4526(00)00749-3.
  • 23. Li W., Zong B. N., Li X. F., Meng X. K., Zhang J. L., 2006. Interphase mass transfer in G-L-S magnetically stabilized bed with amorphous alloy SRNA-4 catalyst. Chinese J. Chem. Eng., 14, 734-739. DOI: 10.1016/S1004-9541(07)60004-4.
  • 24. Mehedintu M., Berg H., 1997. Proliferation response of yeast Saccharomyces cerevisiae on electromagnetic field parameters. Bioelectroch. Bioener., 43, 67-70. DOI: 10.1016/S0302-4598(96)05184-7.
  • 25. Mills P.L., Chaudhari R.V., 1999. Reaction engineering of emerging oxidation processes. Catal. Today., 48, 17-29. DOI: 10.1016/S0920-5861(98)00354-X.
  • 26. Moffat H.K., 1965. On fluid flow induced by a rotating magnetic field. J. Fluid. Mech., 22, 521-528. DOI: 10.1017/S0022112065000940.
  • 27. Montes F.Y., Catalan J., Galan M.A., 1999. Prediction of kLa in yeast broths. Proc. Biochem., 34, 549-554. DOI: 10.1016/S0032-9592(98)00125-3.
  • 28. Ozbek B., Gayik S., 2001. The studies on the oxygen mass transfer coefficient in a bioreactor. Proc. Biochem., 36, 729-741. DOI: 10.1016/S0032-9592(00)00272-7.
  • 29. Rakoczy R., 2011. Theoretical and experimental analysis of the influence of the rotating magnetic field on the selected unit operations and processes of chemical engineering. Academic Publisher of West Pomeranian University of Technology, Szczecin. ISBN 978-83-7663-074-8.
  • 30. Rakoczy R., 2013. Mixing energy investigations in a liquid vessel that is mixed by using a rotating magnetic field. Chem. Eng. Process. Process Intensif., 66, 1-11. DOI: 10.1016/j.cep.2013.01.012.
  • 31. Rakoczy R., Konopacki M., Fijałkowski K., 2016. The influence of a ferrofluid in the presence of an external rotating magnetic field on the growth rate and cell metabolic activity of a wine yeast strain. Biochem. Eng. J. 109, 43-50. DOI: 10.1016/j.bej.2016.01.002.
  • 32. Rakoczy, R., Masiuk, S., 2011. Studies of a mixing process induced by a transverse rotating magnetic field. Chem. Eng. Sci., 66, 2298-2308. DOI: 10.1016/j.ces.2011.02.021.
  • 33. Santos L.O., Alegre R.M., Garcia-Diego C., Cuellar J., 2010. Effects of magnetic fields on biomass and glutathione production by the yeast Saccharomyces cerevisiae. Process. Biochem., 45, 1362-1367. DOI: 10.1016/j.procbio.2010.05.008.
  • 34. Spitzer K.H., 1999. Application of rotating magnetic fields in Czochralski crystal growth. Prog. Cryst. Growth. Ch., 38, 59-71. DOI: 10.1016/S0960-8974(99)00008-X.
  • 35. Torab-Mostaedi M., Safdari S.J., Moosavian M.A., Maragheh M.G., 2008. Mass transfer coefficients in a Hanson mixer-settler extraction column. Braz. J. Chem. Eng., 25, 473-481. DOI: 10.1590/S0104-66322008000300005.
  • 36. Volz M. P., Mazuruk K., 1999. Thermoconvective instability in a rotating magnetic field. Int. J. Heat Mass Tran., 42, 1037-1045. DOI: 10.1016/S0017-9310(98)00168-9.
  • 37. Weng D.C., Cheng L.N., Han Y., Zhu W.X., Xu S.M., Ouyang F., 1992. Continuous ethanol fermentation in a three-phase magnetic fluidized bed bioreactor. AIChE Symposium Series, Fluidized Processes: Theory and Practice, 88, 107-115.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ed6d9052-fcd6-41b6-bfd4-2e0fdc33a824
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.