PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of IQT on research in ICT. Part 2

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The advanced Quantum Information Technologies subject for Ph.D. students in Electronics Engineering and ICT consists of three parts. A few review lectures concentrate on topics which may be of interest for the students due to their fields of research done individually in their theses. The lectures indicate the diversity of the QIT field, resting on physics and applied mathematics, but possessing wide application range in quantum computing, communications and metrology. The individual IQT seminars prepared by Ph.D. students are as closely related to their real theses as possible. Important part of the seminar is a discussion among the students. The task was to enrich, possibly with a quantum layer, the current research efforts in ICT. And to imagine, what value such a quantum enrichment adds to the research. The result is sometimes astonishing, especially in such cases when quantum layer may be functionally deeply embedded. The final part was to write a short paragraph to a common paper related to individual quantum layer addition to the own research. The paper presents some results of such experiment and is a continuation of previous papers of the same style.
Twórcy
  • Warsaw University of Technology, Poland
  • Warsaw University of Technology, Poland
  • Warsaw University of Technology, Poland
  • Warsaw University of Technology, Poland
  • Warsaw University of Technology, Poland
  • Warsaw University of Technology, Poland
  • Warsaw University of Technology, Poland
Bibliografia
  • [1] “Wetterstrand ka. dna sequencing costs: Data from the nhgri genome sequencing program (gsp),” www.genome.gov/sequencingcostsdata, accessed: 2024-12-01.
  • [2] E. Lieberman-Aiden, N. L. van Berkum, L. Williams, M. Imakaev, T. Ragoczy, A. Telling, I. Amit, B. R. Lajoie, P. J. Sabo, M. O. Dorschner, R. Sandstrom, B. Bernstein, M. A. Bender, M. Groudine, A. Gnirke, J. Stamatoyannopoulos, L. A. Mirny, E. S. Lander, and J. Dekker, “Comprehensive mapping of longrange interactions reveals folding principles of the human genome,” Science, vol. 326, no. 5950, pp. 289-293, 2009. [Online]. Available: https://www.science.org/doi/abs/10.1126/science.1181369
  • [3] C. H. Bennett, E. Bernstein, G. Brassard, and U. Vazirani, “Strengths and weaknesses of quantum computing,” SIAM Journal on Computing, vol. 26, no. 5, pp. 1510-1523, 1997. [Online]. Available: https://doi.org/10.1137/S0097539796300933
  • [4] A. J. da Silva, T. B. Ludermir, and W. R. de Oliveira, “Quantum perceptron over a field and neural network architecture selection in a quantum computer,” Neural Networks, vol. 76, pp. 55-64, 2016. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0893608016000034
  • [5] M. Schuld, I. Sinayskiy, and F. Petruccione, “The quest for a quantum neural network,” Quantum Information Processing, vol. 13, no. 11, pp. 2567-2586, Nov 2014. [Online]. Available: https://doi.org/10.1007/s11128-014-0809-8
  • [6] J. R. McClean, S. Boixo, V. N. Smelyanskiy, R. Babbush, and H. Neven, “Barren plateaus in quantum neural network training landscapes,” Nature Communications, vol. 9, no. 1, p. 4812, 2018. [Online]. Available: https://doi.org/10.1038/s41467-018-07090-4
  • [7] R. T. Q. Chen, Y. Rubanova, J. Bettencourt, and D. Duvenaud, “Neural ordinary differential equations,” in Proceedings of the 32nd International Conference on Neural Information Processing Systems, ser. NIPS’18. Red Hook, NY, USA: Curran Associates Inc., 2018, p. 6572-6583.
  • [8] D. W. Berry, “High-order quantum algorithm for solving linear differential equations,” Journal of Physics A: Mathematical and Theoretical, vol. 47, no. 10, p. 105301, feb 2014. [Online]. Available: https://dx.doi.org/10.1088/1751-8113/47/10/105301
  • [9] A. W. Harrow, A. Hassidim, and S. Lloyd, “Quantum algorithm for linear systems of equations,” Phys. Rev. Lett., vol. 103, p. 150502, Oct 2009. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevLett.103.150502
  • [10] S. Lloyd, G. D. Palma, C. Gokler, B. Kiani, Z.-W. Liu, M. Marvian, F. Tennie, and T. Palmer, “Quantum algorithm for nonlinear differential equations,” 2020. [Online]. Available: https://arxiv.org/abs/2011.06571
  • [11] J.-P. Liu, H. Øie Kolden, H. K. Krovi, N. F. Loureiro, K. Trivisa, and A. M. Childs, “Efficient quantum algorithm for dissipative nonlinear differential equations,” Proceedings of the National Academy of Sciences, vol. 118, no. 35, p. e2026805118, 2021. [Online]. Available: https://www.pnas.org/doi/abs/10.1073/pnas.2026805118
  • [12] A. L. Blum and R. L. Rivest, “Training a 3-node neural network is np-complete,” Neural Networks, vol. 5, no. 1, pp. 117-127, 1992. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0893608005800103
  • [13] B. D. Haeffele and R. Vidal, “Global optimality in neural network training,” in 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017, pp. 4390-4398.
  • [14] S. Agostinelli, J. Allison, K. Amako, J. Apostolakis, H. Araujo, P. Arce, M. Asai, D. Axen, S. Banerjee, G. Barrand et al., “Geant4—a simulation toolkit,” Nuclear instruments and methods in physics research section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 506, no. 3, pp. 250-303, 2003.
  • [15] J. Dubiński, K. Deja, S. Wenzel, P. Rokita, and T. Trzciński, “Machine learning methods for simulating particle response in the zero degree calorimeter at the alice experiment, cern,” in AIP Conference Proceedings, vol. 3061, no. 1. AIP Publishing, 2024.
  • [16] M. Paganini, L. de Oliveira, and B. Nachman, “Accelerating science with generative adversarial networks: An application to 3d particle showers in multilayer calorimeters,” Physical Review Letters, vol. 120, no. 4, Jan. 2018. [Online]. Available: http://dx.doi.org/10.1103/PhysRevLett.120.042003
  • [17] K. Deja, T. Trzciński, and Ł. Graczykowski, “Generative models for fast cluster simulations in the tpc for the alice experiment,” in Information Technology, Systems Research, and Computational Physics. Springer, 2019, pp. 267-280.
  • [18] A. Radovic, M. Williams, D. Rousseau, M. Kagan, D. Bonacorsi, A. Himmel, A. Aurisano, K. Terao, and T. Wongjirad, “Machine learning in high energy physics community white paper,” Journal of Physics G: Nuclear and Particle Physics, vol. 46, no. 6, p. 063001, 2019.
  • [19] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” arXiv preprint arXiv:1312.6114, 2013.
  • [20] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,” in Advances in Neural Information Processing Systems, 2014, pp. 2672-2680.
  • [21] J. Sohl-Dickstein, E. A. Weiss, N. Maheswaranathan, and S. Ganguli, “Deep unsupervised learning using nonequilibrium thermodynamics,” in Proceedings of the 32nd International Conference on Machine Learning, 2015, pp. 2256-2265.
  • [22] D. J. Rezende and S. Mohamed, “Variational inference with normalizing flows,” in Proceedings of the 32nd International Conference on Machine Learning, 2015, pp. 1530-1538.
  • [23] E. Buhmann, S. Diefenbacher, E. Eren, F. Gaede, G. Kasieczka, A. Korol, and K. Krüger, “Getting high: High fidelity simulation of high granularity calorimeters with high speed,” Computing and Software for Big Science, vol. 5, no. 1, p. 13, 2021. [Online]. Available: https://doi.org/10.1007/s41781-021-00056-0
  • [24] S. Diefenbacher, E. Eren, F. Gaede, G. Kasieczka, A. Korol, K. Krüger, P. McKeown, and L. Rustige, “New angles on fast calorimeter shower simulation,” 2023. [Online]. Available: https://arxiv.org/abs/2303.18150
  • [25] K. Rogoziński, J. Dubiński, P. Rokita, and K. Deja, “Particle physics dl-simulation with control over generated data properties,” arXiv preprint arXiv:2405.14049, 2024. [Online]. Available: https://arxiv.org/abs/2405.14049
  • [26] K. Deja, J. Dubiński, P. Nowak, S. Wenzel, and T. Trzciński, “End-to-end sinkhorn autoencoder with noise generator,” arXiv preprint arXiv:2006.06704, 2020. [Online]. Available: https://arxiv.org/abs/2006.06704
  • [27] J. N. Howard, S. Mandt, D. Whiteson, and Y. Yang, “Learning to simulate high energy particle collisions from unlabeled data,” Scientific Reports, vol. 12, no. 1, May 2022. [Online]. Available: http://dx.doi.org/10.1038/s41598-022-10966-7
  • [28] CMS Collaboration, “Gan-based simulation of cms detector response,” CERN, Preprint, 2019.
  • [29] G. R. Khattak, S. Vallecorsa, F. Carminati et al., “Fast simulation of a high granularity calorimeter by generative adversarial networks,” European Physical Journal C, vol. 82, p. 386, 2022.
  • [30] J. Dubiński, K. Deja, S. Wenzel, P. Rokita, and T. Trzciński, “Selectively increasing the diversity of gan-generated samples,” in International Conference on Neural Information Processing. Springer, 2020, pp. 260-270.
  • [31] P. Bedkowski, J. Dubiński, K. Deja, and P. Rokita, “Deep generative models for proton zero degree calorimeter simulations in alice, cern,” arXiv preprint arXiv:2406.03263, 2024. [Online]. Available: https://arxiv.org/abs/2406.03263
  • [32] O. Amram and K. Pedro, “Denoising diffusion models with geometry adaptation for high fidelity calorimeter simulation,” Phys. Rev. D, vol. 108, no. 7, p. 072014, 2023.
  • [33] P. Devlin, J.-W. Qiu, F. Ringer, and N. Sato, “Diffusion model approach to simulating electron-proton scattering events,” Phys. Rev. D, vol. 110, p. 016030, Jul 2024. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevD.110.016030
  • [34] M. Kita, J. Dubi´nski, P. Rokita, and K. Deja, “Generative diffusion models for fast simulations of particle collisions at cern,” arXiv preprint arXiv:2406.03233, 2024. [Online]. Available: https://arxiv.org/abs/2406.03233
  • [35] C. Jiang, S. Qian, and H. Qu, “Choose your diffusion: Efficient and flexible ways to accelerate the diffusion model in fast high energy physics simulation,” arXiv preprint arXiv:2401.13162, 2024.
  • [36] M. Wojnar, “Applying generative neural networks for fast simulations of the alice (cern) experiment,” arXiv preprint arXiv:2407.16704, 2024.
  • [37] S. Schnake, D. Kr¨ucker, and K. Borras, “Calopointflow ii generating calorimeter showers as point clouds,” arXiv preprint arXiv:2403.15782, 2024.
  • [38] E. Buhmann, C. Ewen, D. A. Faroughy, T. Golling, G. Kasieczka, M. Leigh, G. Quétant, J. A. Raine, D. Sengupta, and D. Shih, “Epic-ly fast particle cloud generation with flow-matching and diffusion,” arXiv preprint arXiv:2310.00049, 2023.
  • [39] J. Wu, H. Fu, M. Zhu, H. Zhang, W. Xie, and X.-Y. Li, “Quantum circuit autoencoder,” Physical Review A, vol. 109, no. 3, Mar. 2024. [Online]. Available: http://dx.doi.org/10.1103/PhysRevA.109.032623
  • [40] C. Zoufal, A. Lucchi, and S. Woerner, “Quantum generative adversarial networks for learning and loading random distributions,” npj Quantum Information, vol. 5, p. 103, 2019. [Online]. Available: https://doi.org/10.1038/s41534-019-0223-2
  • [41] A. Cacioppo, L. Colantonio, S. Bordoni, and S. Giagu, “Quantum diffusion models,” 2023. [Online]. Available: https://arxiv.org/abs/2311.15444
  • [42] S. Lawrence, A. Shelby, and Y. Yamauchi, “Quantum states from normalizing flows,” 2024. [Online]. Available: https://arxiv.org/abs/2406.02451
  • [43] S. Hoque, H. Jia, A. Abhishek, M. Fadaie, J. Q. Toledo-Marín, T. Vale, R. G. Melko, M. Swiatlowski, and W. T. Fedorko, “Caloqvae: Simulating high-energy particle-calorimeter interactions using hybrid quantum-classical generative models,” arXiv preprint, 2023. [Online]. Available: https://arxiv.org/abs/2305.07284
  • [44] F. Rehm, S. Vallecorsa, M. Grossi, K. Borras, and D. Krücker, “A full quantum generative adversarial network model for high energy physics simulations,” arXiv preprint, 2023. [Online]. Available: https://arxiv.org/abs/2305.07284
  • [45] S. Y. Chang, S. Herbert, S. Vallecorsa, and E. Combarro, “Quantum generative adversarial networks in a high energy physics context,” CERN Document Server, 2023. [Online]. Available: https://cds.cern.ch/record/2751529
  • [46] C. Bravo-Prieto, J. Baglio, M. Cè, A. Francis, D. M. Grabowska, and S. Carrazza, “Style-based quantum generative adversarial networks for monte carlo events,” arXiv preprint, 2023. [Online]. Available: https://arxiv.org/abs/2110.06933
  • [47] A. Cacioppo, L. Colantonio, S. Bordoni, and S. Giagu, “Quantum diffusion models for quantum data learning in high-energy physics,” Quantum Information, 2024, presented at QTML 2024. [Online]. Available: https://arxiv.org/abs/2311.15444
  • [48] A. Alonso, S. Carrazza, and S. Lammel, “Quantum machine learning in the atlas experiment at cern,” Proceedings of Science, vol. ICHEP2020, p. 505, 2020.
  • [49] L. Nagano, A. Miessen, T. Onodera, I. Tavernelli, F. Tacchino, and K. Terashi, “Quantum data learning for quantum simulations in high-energy physics,” Physical Review Research, vol. 5, no. 4, p. 043250, 2023.
  • [50] S. Y. Chang, S. Herbert, S. Vallecorsa, E. F. Combarro, and R. Duncan, “Dual-parameterized quantum circuit gan model in high energy physics,” arXiv preprint arXiv:2103.15470, 2021.
  • [51] O. Kiss, M. Grossi, E. Kajomovitz, and S. Vallecorsa, “Conditional born machine for monte carlo event generation,” Physical Review A, vol. 106, no. 2, p. 022612, 2022.
  • [52] M. D. Insights, “Potential and challenges of quantum computing hardware technologies,” 2021. [Online]. Available: https://www.mckinsey.com/capabilities/mckinsey-digital/our-insights/tech-forward/potential-and-challenges-of-quantum-computing-hardware-technologies
  • [53] Q. C. R. Group, “Decoherence in noisy intermediate-scale quantum devices,” arXiv preprint, 2022. [Online]. Available: https://arxiv.org/abs/2201.08047
  • [54] R. C. on Hybrid Systems, “Challenges in integrating hybrid quantum-classical systems,” arXiv preprint, 2022. [Online]. Available: https://arxiv.org/abs/2203.05567
  • [55] Q. M. L. R. Group, “Training quantum models on high-dimensional data,” arXiv preprint, 2022. [Online]. Available: https://arxiv.org/abs/2204.07789
  • [56] G. S. S. e. a. Sahil, Natanasabapathi, “Study of dosimetric properties of lib3o5:ag using the osl/ta-osl method for medical radiation application,” J. Electron. Mater., 2024. [Online]. Available: https://doi.org/10.1007/s11664-024-11544-5
  • [57] J. I. K. J. L. Pradhan, A. S.; Lee, “Recent developments of optically stimulated luminescence materials and techniques for radiation dosimetry and clinical applications.” Journal of Medical Physics, vol. 33(3), pp. 85-99, 2008. [Online]. Available: 10.4103/0971-6203.42748
  • [58] L. Kouwenhoven and C. Marcus, “Quantum dots,” Physics World, vol. 11, p. 35, 1998. [Online]. Available: 10.1088/2058-7058/11/6/26
  • [59] W. S. Shi Ying Lim and Z. Gao, “Carbon quantum dots and their applications,” Chem. Soc. Rev, vol. 44, pp. 362-381, 2014. [Online]. Available: 10.1039/C4CS00269E
  • [60] L. D. E. . S. D. R. Hobson, P. R., “Effect of gamma radiation on potential ionising radiation detectors and dosimeters based on quantum dots,” IEEE Nuclear Science Symposium Conference Record, 2011.
  • [61] D. L. C. N. A. Marie- Ève Delage, Marie-Ève Lecavalier and L. Beaulieu, “Dosimetric properties of colloidal quantum dot-based systems for scintillation dosimetry,” Phys. Med. Biol, vol. 64, pp. 362-381, 2019.
  • [62] M. Amir, C. Bauckhage, A. Chircu, C. Czarnecki, C. Knopf, N. Piatkowski, and E. Sultanow, “What can we expect from quantum (digital) twins?” [Online]. Available: https://aisel.aisnet.org/wi2022/workshops/workshops/15
  • [63] Q. Qi, F. Tao, T. Hu, N. Anwer, A. Liu, Y. Wei, L. Wang, and A. Y. C. Nee, “Enabling technologies and tools for digital twin,” vol. 58, pp. 3-21. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S027861251930086X
  • [64] Y. Yang, W. Meng, and S. Zhu, “A digital twin simulation platform for multi-rotor UAV,” in 2020 7th International Conference on Information, Cybernetics, and Computational Social Systems (ICCSS), pp. 591-596, ISSN: 2639-4235. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/9336872
  • [65] Quality evaluation of digital twins generated based on UAV photogrammetry and TLS: Bridge case study. [Online]. Available: https://www.mdpi.com/2072-4292/13/17/3499
  • [66] Z. Lv, C. Cheng, and H. Song, “Digital twins based on quantum networking,” vol. 36, no. 5, pp. 88-93, conference Name: IEEE Network. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/9963997
  • [67] Digital twin—the simulation aspect. [Online]. Available: https://www.researchgate.net/publication/303900830_Digital_Twin-The_Simulation_Aspect
  • [68] M. Schuld, I. Sinayskiy, and F. Petruccione, “An introduction to quantum machine learning,” vol. 56, no. 2, pp. 172-185, publisher: Taylor& Francis eprint: https://doi.org/10.1080/00107514.2014.964942. [Online]. Available: https://doi.org/10.1080/00107514.2014.964942
  • [69] A. Barthe, M. Grossi, J. Tura, and V. Dunjko, “Continuous variables quantum algorithm for solving ordinary differential equations,” in 2023 IEEE International Conference on Quantum Computing and Engineering (QCE), vol. 02, pp. 48-53. [Online]. Available: https://ieeexplore.ieee.org/document/10313758/?arnumber=10313758
  • [70] Z. Qu, Y. Li, B. Liu, D. Gupta, and P. Tiwari, “DTQFL: A digital twin-assisted quantum federated learning algorithm for intelligent diagnosis in 5g mobile network,” pp. 1-10, conference Name: IEEE Journal of Biomedical and Health Informatics. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/10210652
  • [71] U. Kumari and P. Malhotra, “Use of digital twin in predicting the life of aircraft main bearing,” in Simulation Techniques of Digital Twin in Real-Time Applications. John Wiley & Sons, Ltd, pp. 261-288. [Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/9781394257003.ch12
  • [72] Digital twin framework for aircraft lifecycle management based on data-driven models. [Online]. Available: https://www.mdpi.com/2227-7390/12/19/2979
  • [73] E. Boros, P. L. Hammer, R. Sun, and G. Tavares, “A max-flow approach to improved lower bounds for quadratic unconstrained binary optimization (QUBO),” vol. 5, no. 2, pp. 501-529. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1572528607000400
  • [74] M. Maronese, L. Moro, L. Rocutto, and E. Prati, “Quantum compiling,” in Quantum Computing Environments, S. S. Iyengar, M. Mastriani, and K. L. Kumar, Eds. Springer International Publishing, pp. 39-74. [Online]. Available: https://doi.org/10.1007/978-3-030-89746-8_2
  • [75] X. Li, N. Chen, X. Zhou, P. Gong, S. Wang, Y. Zhang, and Y. Zhao, “A review of specialty fiber biosensors based on interferometer configuration,” Journal of Biophotonics, vol. 14, no. 6, p. e202100068, 2021. [Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/jbio.202100068
  • [76] V. Pilla, S. R. de Lima, A. A. Andrade, A. C. Silva, and N. O. Dantas, “Fluorescence quantum efficiency of cdse/cds magic-sized quantum dots functionalized with carboxyl or hydroxyl groups,” Chemical Physics Letters, vol. 580, pp. 130-134, 2013. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0009261413008671
  • [77] Y. Zhong, L.-X. Huang, M.-T. Lin, Z.-Y. Zhang, A.-L. Liu, and Y. Lei, “A y-shape-structured electrochemiluminescence biosensor based on carbon quantum dots and locked nucleic acid probe for microrna determination with single-base resolution,” Biosensors and Bioelectronics, vol. 238, p. 115583, 2023. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0956566323005250
  • [78] C. Li, R. Soleyman, M. Kohandel, and P. Cappellaro, “Sars-cov-2 quantum sensor based on nitrogen-vacancy centers in diamond,” Nano Letters, vol. 22, no. 1, pp. 43-49, Jan 2022. [Online]. Available: https://doi.org/10.1021/acs.nanolett.1c02868
  • [79] J. e. a. Yin, “Satellite-based entanglement distribution over 1200 kilometers,” Science, 2017. [Online]. Available: https://doi.org/10.1126/science.aan3211
  • [80] S.-K. e. a. Liao, “Satellite-relayed intercontinental quantum network,” Physical Review Letters, 2018. [Online]. Available: https://doi.org/10.1103/PhysRevLett.120.030501
  • [81] Quantum technology: Sensing and imaging. [Online]. Available: https://researchcentre.army.gov.au/library/land-power-forum/quantum-technology-sensing-and-imaging
  • [82] F. R. Cardoso, D. Z. Rossatto, G. P. L. M. Fernandes, G. Higgins, and C. J. Villas-Boas, “Superposition of two-mode squeezed states for quantum information processing and quantum sensing,” Physical Review A, 2021. [Online]. Available: https://doi.org/10.1103/PhysRevA.103.062405
  • [83] B. Kantsepolsky, I. Aviv, R. Weitzfeld, and E. Bordo, “Exploring quantum sensing potential for systems applications,” IEEE Access, vol. 11, pp. 31 569-31 582, 2023.
  • [84] J. Steiner and P. Lukeš, “Wide-area gps interference over europe from an unknown source,” in 2022 New Trends in Civil Aviation (NTCA), 2022, pp. 51-55.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ed63b327-c178-4d47-adeb-0ba10d8ac9a6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.