
INFORMATION
SYSTEMS IN

MANAGEMENT Information Systems in Management (2015) Vol. 4 (2) 123−134

SECURITY RISKS AND THEIR PREVENTION CAPABILITIES
IN MOBILE APPLICATION DEVELOPMENT

ANETA MICHALSKA, ANETA PONISZEWSKA-MARANDA

Institute of Information Technology, Lodz University of Technology, Poland

Mobile applications fulfill the more and more significant role in everyday life of
the rapidly growing number of Smartphone users. IT companies try to establish new
standards of data management as well as create mobile applications extending the
functionalities of existing systems to enable the users to benefit from the newest
technological advances. The paper presents a review of the known mobile applica-
tion vulnerabilities for the two most popular mobile platforms, Apple's iOS and
Google's Android, and proposes the secure development model to overcome the ex-
isting threats faced by mobile application developers.

Keywords: Mobile Application Development, Security of Mobile Applications, IOS
Platform, Android Platform

1. Introduction

Together with the growth of the popularity and number of the smartphone us-
ers more and more real-life applications for mobile devices were invented and
brought to life. Seeing this trend many companies incorporated mobile systems by
establishing new standards of data management as well as by creating mobile ap-
plications extending the functionalities of their existing systems to enable the users
to benefit from the newest technological advances. Nevertheless, after initial phase
of going into raptures over the simplicity and multiple possibilities which mobile
applications give to their users, the more serious issue of data and information se-
curity was raised. It is necessary to talk about the possibly mechanisms to secure

124

the mobile application, to talk about the development strategies which should be
used to prevent capturing sensitive confidential data by third-party applications
installed on our smartphones.

However, first of all the common and less common mobile application vul-
nerabilities should be established to find the incipient development solutions which
aim to overcome the existing threats faced by mobile application developers.

The variety of applications embraces not only their functional differences, but
also the different technologies they were created in. As the security of a single
mobile application is greatly dependent on its target platform the review, presented
in the first parts of this paper, will be divided into parts where threats specific for
each considered platform will be discussed separately [1, 3, 15, 18].

The choice of the platforms seems to be easy looking at the current trends and
usage statistics. Currently the market is led by two most popular mobile operating
systems – Apple's iOS and Google's Android. Mobile applications written for these
two platforms constitute the majority of the overall number of created applications
with the stable position of iOS [2, 4] on the market recently interrupted by the in-
creasing popularity of Android [5, 6].

iOS owes its popularity both to the luxurious brand status as well as to its rep-
utation of being more secure and less prone to external attacks than any other sys-
tem. However, the intuitiveness and ease of use of Android applications make it
comparably attractive despite its known drawbacks in the area of security.
Any developer of mobile application for these platforms should be aware of the
threats and vulnerabilities that each of them carries and should adjust the develop-
ment strategies in such a way so that the optimal level of safety is assured especial-
ly when interaction with confidential or sensitive data is required [13, 18].

The presented paper is composed as follows: section 2 presents the outline of
iOS architecture from the security point of view and the possible security risks in
development of iOS applications. Section 3 deals with the security issues of An-
droid operating system architecture and shows the major vulnerabilities of its ap-
plications. Finally, section 4 describes the proposition of secure development mod-
el for mobile applications.

2. Security architecture and security risks in iOS application development

According to [2] security lies at the core of the architecture of iOS operating
system. In fact a variety of mechanisms is implemented within the iOS framework
which aims to protect the device and data without user knowledge or developer
interference. Apple provides special precautions regarding system security itself as
well as security of installed applications, the file system, network services and
device control.

125

The general architecture of iOS system is based on layers (Fig. 1). This means
that applications installed and running on the device do not have to communicate
with the hardware directly, but instead they use a set of public APIs through which
system requests are handled. The developer can freely use these APIs to achieve
desired actions, but simultaneously he is limited to a number of operations that
Apple made accessible through these APIs. In order to assure that developers do
not try to perform forbidden operations the code-signing process takes place [2, 4].

Figure 1. Overview of layered iOS architecture

The lower-level layers Core Services and Core OS contain fundamental tech-

nologies available on the device. The high-level layers provide the developers with
more specific and sophisticated interfaces in order to accelerate the development
process and make actions more understandable and accessible through abstraction
and encapsulation. It is recommended that at all times applications should make
use of these high-level interfaces instead of the low-level ones as there is better
chance that they will conform to Apple implementation standards during code veri-
fication [16].
The core security mechanisms implemented as a part of iOS security architecture
are as follows:
• layered architecture specifying public APIs for general use for application

developers,
• vetting process,
• System Software Authorization process,
• encryption mechanisms,
• Data Protection feature,
• Keychain and code-signing.

In order to assess and find flaws in the security of any mobile application it is
worth determining what are the possible points of interest for the potential attacker.
The most obvious reasons for breaking into the application are stealing the confi-
dential data like passwords, account or credit card numbers and other personal data.
Sometimes also capturing the multimedia data like videos or photos, data contained

126

in the address book, mail or location info may be the target of the attack. Among
other reasons one may also distinguish the will to omit some licensing issues or
simply doing this "for fun".
The vulnerable points, significant risks of iOS operating system which may be-
come potential security leaks can be named:
• stealing sensitive data stored in key-chains,
• installation of third-party applications invoking internal system calls,
• running unsigned code on the device by jailbreaking the device,
• method swizzling – changing implementation of methods during runtime,
• vast exchange of private personal information for the statistical and advertis-

ing purposes.

Basing on such potential aims that the attackers want to gain an access to one can
deduce that the most vulnerable parts of the application will embrace:
• data storage points,
• permission management policy
• application file system and
• any kind of configuration files that may be stored within the device.

According to the Apple’s security report the design ore of the iOS architecture is its
security [2, 4]. And it is beyond doubt that a lot care has been taken to assure prop-
er level of safety by incorporating such mechanisms as data encryption, code-
signing and sandboxing (Fig. 2).

Figure 2. iOS security architecture [2]

Encryption is a standard mechanism and should prevent any unauthorized par-

ty from decoding information even if they are captured. Code-signing is connected
with a strict procedure reserved for any application to be published in the AppStore
which assures that only applications conforming to the Apple's standards, using
allowed API's methods and submitted by registered distributors will let to be pub-
lished. Sandboxing is a well-known mechanism for running programs separately
from other system resources so that there is full control over the permissions and

127

allowed access that the application requires. Sandboxing is frequently used with
untrusted programs which have to be run on the device but here it is used to pre-
vent downloaded application to use the resources of other application or the system
or accessing the kernel resources that they are not allowed to.

3. Security architecture and major vulnerabilities of Android applications

Android applications are reported to be the aim of malicious attacks signifi-
cantly more often then iOS ones. Android developers recognized security as an
essential feature of their system and consequently they decided to design the archi-
tecture in such a way, so that it provided basic but reliable security mechanisms for
applications [5, 8, 10]. The main focus of Android security architecture is to assure
proper protection of data and system resources as well as to achieve the effect of
isolation of applications, so that they did not interfere with other resources if it is
not necessary (Fig. 3).
The basic security techniques built into the internal architecture of Android operat-
ing system are the following:
• set of basic security functionalities assured by the used Linux kernel,
• separation of all processes and system resources,
• identification of applications by UID identifiers,
• complex encryption mechanisms,
• permission-based security policy,
• inter-process communication (IPC) and code-signing.

Figure 3. Layered Android architecture

Similarly as in case of iOS architecture the Android operating system can also

be viewed as a layered structure. At the core of this structure lies the Linux kernel
which assures the stable and reliable environment as it has been thoroughly studied
and improved basing on experiences from the original applications on desktop
computers.

128

The Linux kernel provides basic security functionalities such as:
• permission-based access model,
• user-based permissions,
• isolation of processes,
• secure inter-process communication (IPC),
• possibility to remove suspicious parts of the kernel.

Android provides a variety of mechanisms to protect sensitive content. The major
focus is put on the separation of resources belonging to different applications
which reflects in well-developed sandboxing techniques and widely used permis-
sion-based model of accessing resources and performing operations.

Compared with iOS applications, Android ones more frequently become the
target of attacks of malicious software [11, 14, 17]. Even though they have been
reported as more vulnerable are terms of security. This may derive from the fact
that unlike Apple, Google is not performing a strict vetting process i.e. it does not
check the compliance of the applications published on Google Play with the com-
pany's standards. Therefore more malicious software may be slipped through on to
the market.
From among major risks connected with development of Android applications the
following threats seem to be of utmost importance:
• running third-party applications with root privileges,
• reverse-engineering Android applications resulting in access to the application

resources like AndroidManifest.xml file,
• changing byte code of the application,
• firing activities without user interaction,
• vast exchange of data for commercial purposes.

Android applications are commonly written in Java which makes them more easily
reversible than iOS ones. As it was mentioned reversing any application allows
gaining the information on its structure, data flow and controlling flow. Thus, the
security risks for Android applications are in this case corresponding to the ones
encountered when dealing with iOS ones. Although the changes that can be done to
the application are a lot further-gone as after reversing an Android application it is
possible to change the obtained byte-code and repackage the application. The target
of such repackaging may be for instance an XML file containing permission con-
figuration – AndroidManifest.xml. Among others the information which permis-
sions does the application have is stored: Internet access permission, sharing loca-
tion, accessing contact list, etc. By altering this file, doing which in fact does not
require the changing of byte-code, one may easily increase the range of permis-
sions available for an application. Reversing Android applications is the first step
in finding all the information the potential attacker would have in his list. As prov-

129

en by [17] anything starting from configuration files, database files, certificates,
key-stores with the use of proper and available tools can be recovered from the
byte-code of the application and altered.

4. Secure Development Model

As was presented in the previous sections the field of security of mobile ap-
plications requires the elevated attention because of the privacy issues of millions
of users of smartphones and the lack of adequate solutions to assure the security of
data. Having this in mind it is worth to think about more ways of how to reduce the
risks connected with mobile security in the context of development process itself.
It is possible to provide a model that would assure less probability of capturing
sensitive data by malicious software or hackers [9, 12].

The idea of Secure Development Strategy (SDS) was introduced for building
mobile applications so that they would be less vulnerable to external attacks and
leaks of sensitive data (Fig. 4).

The existing approaches to mobile application security focus mainly on the
transmission of sensitive data to external services that is not always necessary and
desired. Safe data transfer between mobile and external devices is undoubtedly a
crucial link in the process of securing the applications, however not the only one.
The idea of Secure Development Strategy assumes that application should conform
to pre-defined security standards embracing storage, access and transfer of sensi-
tive data. Conformation to the standards should be achieved by implementing
threefold security pattern for each of the mentioned areas. The model specifies the
assumptions on how to achieve a proper level of security in each field and provides
necessary details on the implementation of mechanisms which will allow achieving
desired safety effects.

Figure 4. Pillars of Secure Development Strategy for mobile applications

130

The foundation of data storage pattern should be based on limitation of data
stored on the device and application of an alternative storage space. The extraction
of data from built-in key stores does not constitute a major difficulty. The best
solution to this problem is to limit the amount of stored data especially the critical
ones. However, as it is not possible to avoid it entirely, so additional precautions
can be considered. The main focus for accessing data will be put on identification
and verification of the device and user who wants to gain an access to the external
resources. The last component which is data transfer is dependent on the operation
of the system as a whole, therefore the most concerning aspects that will be taken
into account are the format, encoding and permission checks of data which are
going to be transferred. All of the mentioned mechanisms should be supported by
appropriate encryption techniques.

4.1. Data storage security model

The first pillar of SDS – storage – concerns solely the application-side of the
system. The major assumptions of data storage pattern embrace sensitive data en-
cryption, limitation and restricted access (Fig. 5).

Figure 5. Assumptions of data storage model

While designing mobile applications the developer has two possibilities on

where to store application data. He can choose external server where data will be
stored in databases and special firewall mechanisms will block access to it. On the
other hand if the amount of data is not too large he can choose to store some infor-
mation on the device itself in the local database or file system.

The first option seems to be a better solution as it eliminates the risk of losing
data when the device is damaged. Nonetheless, it requires a large amount of data

131

traffic between the application and the server. In that light the second option comes
in handy – it reduces the amount of data transfer. However it seems to be less prac-
tical, as the data to be valid need to be updated. Moreover, the storage space of the
device is also limited. Thus, the combination of both solutions comes from the
need of keeping the data up-to-date and accessible by many devices at any time
simultaneously giving the possibility to store a little number of crucial information
on the device.

The storage mechanisms depend on the place of where the data is saved on the
device. Two places for data storage which are also a potential risk points can be
discussed for SDS: key store or keychain as it is called in iOS and file system.
The three rules regarding data storage can be formulated as follows:
• sensitive data should never be stored as plain text, but they should always be

encrypted and stored as such in key-chains and any other storage places,
• sensitive data could be stored within the application database files and en-

crypted using encryption keys stored in the external server databases to limit
the risk of reading the data,

• access to the internal database objects should be restricted only to the privi-
leged functions (function calls).

4.2. Data access security model

The second pillar of SDS strategy concerns the access to data. This comes
from the fact that mobile applications need to communicate with external services
and other applications.

The major assumptions of this area of security embrace the three mechanisms
which aim to enable identification of the user requesting access to application re-
sources (Fig.6).

Figure 6. Assumptions of data access model

132

The fundamental SDS rules for data access are:
• mobile application should inform about the current location of the device

every time it requires an access to sensitive data,
• mobile application should always present itself with a digital signature com-

posed of unique device identifier,
• server should always check whether the device session is open before it real-

izes any requests.

4.3. Data transfer security model

Data transfer pattern refers to all mechanisms which involve exchange of data
between the mobile application and external services. These mechanisms should
incorporate in their action flow additional security procedures – data encryption,
the use of security keys and check of requests integrity (Fig. 7).

Figure 7. Assumptions of data transfer model

Although this is the last one of the described pillars of SDS, it is absolutely

not the least important one. On the contrary data transfer seems to be the weakest
link in the entire process of mobile application development. This comes from the
fact that requests are travelling over the Internet in an unprotected space and they
are prone to a special kind of attacks called the man in the middle.

This attack means that between the mobile and server application a third-party
may be listening and waiting for exchange of information. There exist three types
of attacks for the "man in the middle" scenario:
• attack on the privacy of data – stealing confidential information,
• attack on the integrity of data – changing the content of the message,
• impersonation – impersonating other device/user.

133

Firstly, the data sent to the server should always be encrypted. Special care
should be of course taken of data which are considered sensitive like passwords,
credit card numbers and others alike. Encryption is crucial in case of the first attack
scenario regarding privacy – even in case of capturing the data, the content of the
message will be difficult to read.

As far integrity of data is concerned it is a good and common practice to use
the digital signatures. They enable to check whether the message received is exact-
ly the same as message sent and if it was not modified on the way to the receiver.
The digital signature mechanism relies on encryption which should assure the au-
thentication.

The last suggested mechanism represents security keys which seem to be val-
uable in case of using checksum algorithms for digital signatures. Security keys
introduced by SDS are for example 128-bit strings which should be sent to the
server before the request for sensitive data. The security key can be unified for the
entire application and independent from the device. When transferred it should also
be encoded with the cryptographic algorithm.

5. Conclusion

The analysis of the current state of the art in the field of mobile application
security enables to state that threats encountered in mobile application development
do not vary significantly between the chosen platforms. Both iOS and Android
operating systems are prone to similar threats and the existing solutions aiming to
prevent them oscillate around the same issue of privacy leaks in applications.

While designing and building the mobile applications there will always be a
tradeoff between functionality, optimization and security. In the long run however
none of these areas should be omitted and treated with less importance than the
others as only balanced combination of those three will enable to create reliable
and useful solutions.

Currently there exists no standardized solution or methodology for developing
the applications which would threat-resistant. Together with the invention of newer
and newer strategies to prevent the security breaches the more sophisticated threats
emerge and new vulnerabilities are detected by the platform developers.

The presented in the paper Secure Development Strategy for mobile applica-
tions introduces three pillars which should be taken into consideration while
designing and implementing the mobile applications. All these pillars: data storage,
data access and data transfer should be treated as equally significant in developing
applications. The SDS provides details on its assumptions and mechanisms which
should be implemented within the application framework in order to provide the
security.

134

REFERENCES

[1] Porter Felt A., Finifter M., Chin E., Hanna S., Wagner D. (2011) A survey of mobile
malware in the wild, 1st ACM workshop on Security and privacy in smartphones and
mobile devices, 3−14.

[2] Apple (2014) iOS Security.

[3] Souppaya M. P., Scarfone K. A. (2013) Guidelines for Managing the Security of Mo-
bile Devices in the Enterprise, NIST.

[4] Agarwal Y., Hall M. (2013) ProtectMyPrivacy: Detecting and Mitigating Privacy
Leaks on iOS Devices Using Crowdsourcing, 1th Annual International Conference on
Mobile systems, applications, and services, 97−110.

[5] Zhou Y., Jiang X. (2012) Dissecting Android Malware: Characterization and Evolu-
tion, 33rd IEEE Symposium on Security and Privacy.

[6] Vidas T., Votipka D., Christin N. (2011) All Your Droid Are Belong to Us: A Survey
of Current Android Attacks, 5th USENIX Workshop on Offensive Technologies.

[7] Seriot N. (2010) iPhone Privacy, In Black Hat DC, USA.

[8] Enck W., Ongtang M., McDaniel P. (2009) Understanding Android Security, Security
& Privacy, IEEE, Vol. 7, Issue 1, 50−57.

[9] Porter Felt A., Wang H. J., Moshchuk A., Hanna S., ChinE (2011) Permission Re-
Delegation: Attacks and Defenses, 20th USENIX Security Symposium.

[10] Ongtang M., McLaughlin S., Enck W., McDaniel P. (2009) Semantically Rich Appli-
cation-Centric Security in Android, Computer Security Applications Conference.

[11] Enck W., Octeau D., McDaniel P., Chaudhuri S. (2011) A Study of Android Applica-
tion Security, 20th USENIX Security Symposium.

[12] Park M. (2012) Mobile Application Security: Who, How and Why, Trustwave Spi-
derLabs.

[13] Fitzgerald W. M., Neville U., Foley S. N. (2013) MASON: Mobile autonomic security
for network access controls, Journal of Information Security and Applications,
Vol. 18, Issue 1, 14−29.

[14] Zdziarski J. (2012) Hacking and Securing iOS Applications. Stealing Data, Hijacking
Software, and How to Prevent It, O’Reilly Media.

[15] Alhamed M., Amir K., Omari M., Le W (2013) Comparing Privacy Control Methods
for Smartphone Platforms, Engineering of Mobile-Enabled Systems, MOBS.

[16] Gianchandani P. (2013) IOS Application Security Part 12 – Dumping Keychain Data.
Keychanin basics, Infosec Institute.

[17] Benedict C. (2012) Under the Hood: Reversing Android Applications, Infosec.

[18] Khan S., Nauman M., Othman A. T., Musa S. (2012) How secure is your smartphone:
an analysis of smartphone security mechanisms, International conference on cyber
security, cyber warfare and digital forensic, 76–81.

