Tytuł artykułu
Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Niniejsza rozprawa doktorska podejmuje problematykę właściwości nanostruktur Au wytwarzanych poprzez laserową modyfikację cienkich warstw tego metalu oraz również możliwości zastosowania uzyskanych materiałów w wysokoczułej detekcji. Materiał rozprawy przedstawiony jest w czterech częściach: 1) wstęp - podstawy tematyki, 2) cel i zakres pracy, 3) stosowane metody doświadczalne i analityczne oraz 4) wyniki doświadczalne. W pierwszej części przedstawiono główne zagadnienia badań dotyczących oddziaływania światła z nanostrukturami Au, jak również zaprezentowano metody ich wytwarzania oraz szeroki wachlarz potencjalnych zastosowań. Dokonano również przeglądu literaturowego dotyczącego laserowego przetapiania cienkich warstw złota na podłożach tlenkowych, na podstawie którego sformułowano cele rozprawy. Problemem badawczym rozprawy doktorskiej było określenie wpływu warunków oddziaływania lasera na właściwości powstałych struktur. Głównym celem rozprawy była natomiast systematyczna analiza tych właściwości. Dodatkowym celem było zbadanie możliwości aplikacyjnych nanostruktur Au. Kolejna część rozprawy zawiera opis sposobu otrzymywania cienkich metalicznych warstw na podłożach, dokładny opis metody laserowej modyfikacji oraz metod analitycznych stosowanych w badaniach rozprawy. W rozdziale IV. 1. przedstawiono wyniki związane z modyfikacją laserową cienkich warstw Au naniesionych na szklanych podłożach. Wykonane analizy pozwoliły na stwierdzenie, że otrzymywane nanostruktury są częściowo uporządkowane a uformowane w wyniku laserowego przetapiania cząstki są kształtu kulistego bądź zbliżonego do kulistego. Ponadto możliwe było określenie wpływu parametrów pracy lasera oraz początkowej grubości metalicznego filmu na geometrię struktur oraz na ich właściwości optyczne. Wyniki rozprawy wskazują również, że klasyczny model odnoszący się do pojedynczej kulistej cząstki w jednorodnym ośrodku można zastosować dla częściowo uporządkowanych struktur immobilizowanych na podłożach, czyli znajdujących się na granicy dwóch ośrodków. Rozdział IV.2. obejmuje analizę wpływu podłoża przewodzącego na właściwości nanostruktur przy zastosowaniu tych samych parametrów laserowej modyfikacji jak w przypadku podłoży szklanych. W rozdziale IV.3. przedstawiono wyniki dotyczące możliwości aplikacyjnych badanych nanostruktur. Wykazano, że częściowo uporządkowane struktury są konkurencyjne w stosunku do zazwyczaj preferowanych, struktur regularnych w zastosowaniach do wysokoczułej detekcji optycznej. Należy również podkreślić, że po raz pierwszy przeprowadzono badania elektrochemiczne nanostruktur wytwarzanych metodą laserowej obróbki termicznej na tlenkowych podłożach przewodzących a wyniki badań wskazują, że otrzymane materiały elektrodowe mogą znaleźć zastosowanie w sensoryce. W rozdziale V podsumowano pracę badawczą oraz uzyskane w ramach niniejszej dysertacji wyniki. Przedstawiono również perspektywę dalszych badań.
Rocznik
Tom
Strony
3--173
Opis fizyczny
Bibliogr. 217 poz., rys., tab.
Twórcy
autor
- Instytut Maszyn Przepływowych PAN w Gdańsku, Zakład Fotofizyki
Bibliografia
- [1] S. Eustis, M. A. El-Sayed, Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes, Chem. Soc. Rev. 35 (2006) 209-217
- [2] K. L. Kelly, E. Coronado, L. L. Zhao, G. C. Schatz, The optical properties of metal nanoparticles: the influence of size, shape and dielectric environment, J. Phys. Chem. B 107 (2003) 668-677
- [3] X. Huang, M. A. El-Sayed, Gold nanoparticles: optical properties and implementations in cancer diagnosis and photothermal therapy, J. Adv. Mater. 1 (2010) 13-28
- [4] J. R. Lead, K. J. Wilkinson, Aquatic colloids and nanoparticles: current knowledge and future trends, Environ. Chem. 3 (2006) 159-171
- [5] R. M. Hough, R. R. P. Noble, M. Reich, Natural gold nanoparticles, Ore Geol. Rev. 42 (2011) 55-61
- [6] F. J. Heiligtag, M. Niederberger, The fascinating world of nanoparticle research, Mater. Today 16 (2013) 262-271
- [7] I. Freestone, N. Meeks, M. Sax, C. Higgitt, The Lycurgus Cup – a Roman nanotechnology, Gold Bull. 40 (2007) 270-277
- [8] R. H. Brill, The chemistry of the Lycurgus Cup, Proc. 7th Internat. Cong. Glass, comptes rendus 2, paper 223 (1965) 1-13
- [9] http://www.britishmuseum.org (dostęp w dniu 16.03.2016)
- [10] R. W. Wood, On a remarkable case of uneven distribution of light in a diffraction grating spectrum, Philos. Mag. 4 (1902) 396-402
- [11] M. C. Haslam, A study of anomalous scattering from lamellar diffraction gratings, Canad. Appl. Math. Quart. 17 (2009) 487-499
- [12] Lord Rayleigh, Note on the remarkable case of diffraction spectra described by Prof. Wood, Philos. Mag. 14 (1907) 60-65 155
- [13] Lord Rayleigh, On the dynamical theory of gratings, Proc. R. Soc. Lond. 79 (1907) 399-416
- [14] S. Enoch, N. Bonod, Plasmonics. From basics to advanced topics, Springer, 2012
- [15] U. Fano, The theory of anomalous diffraction gratings and of quasi-stationari waves on metallic surfaces (Sommerfeld’s waves), J. Opt. Soc. Am. 31 (1941) 213-222
- [16] M. Neviere, The homogenous problem: Electromagnetic Theory of Gratings, ed R. Petit, Springer, 1980, 132-157
- [17] R. Ulrich, M. Tacke, Submillimeter waveguiding on periodic metal structure, Appl. Phys. Lett. 22 (1973) 251-253
- [18] A. A. Maradudin, I. Simonsen, J. Polanco, R. M. Fitzgerald, Rayleigh and Wood anomalies in the diffraction of light from a perfectly conducting reflection grating, J. Opt. 18 (2016) 024004
- [19] S. Horikoshi, N. Serpone, Microwaves in nanoparticle synthesis: fundamentals and applications, Wiley-VCH, 2013
- [20] https://www.conted.ox.ac.uk/courses/professional/nanobasics/nano/accessWeb/ history.html (dostęp w dniu 17.03.2016)
- [21] A. V. Zayats, I. I. Smolyaninov, A. A. Maradudin, Nano-optics of surface plasmon polaritons, Phys. Rep. 408 (2005) 131-314
- [22] G. Shvets, I. Tsukerman, Plasmonics and plasmonics metamaterials. Analysis and applications, World Scientific, 2011
- [23] K. A. Willets, R. P. Van Duyne, Localized surface plasmon resonance spectroscopy and sensing, Annu. Rev. Phys. Chem. 58 (2007) 267-297
- [24] Y. Chen, H. Ming, Review of surface plasmon resonance and localized surface plasmon resonance sensor, Photonic Sensors 2 (2012) 37-49
- [25] N. I. Grigorchuk, P.M. Tomchuk, Optical and transport properties of spheroidal metal nanoparticles with account for the surface effect, Phys. Rev. B 84 (2011) 085448 156
- [26] V. Myroshnychenko, J. Rodriguez-Fernandez, I. Pastoriza-Santos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Liz-Marzan, F. J. G. de Abajo, Modelling the optical response of gold nanoparticles, Chem. Soc. Rev. 37 (2008) 1792-1805
- [27] N. Ashkroft, N. Mermin, Solid State Physics, Brooks/Cole, 1976
- [28] U. Kreibig, M. Vollmer, Optical properties of metal clusters, Springer, 1995
- [29] W. Cai, V. Shalaev, Optical metamaterials. Fundamentals and applications, Springer, 2010
- [30] B. Hecht, L. Novotny, Principles of Nano-optics, Cambridge University Press, 2006
- [31] A. Derkachova, K. Kolwas, Simple analytic tool for spectral control of dipole plasmon resonance frequency for gold and silver nanoparticles, Phot. Lett. Pol. 5 (2013) 69-71
- [32] S. Kuhn, U. Hakanson, L. Rogobete, V. Sandoghar, Enhancement of single-molecule fluid fluorescence using a gold nanoparticle as an optical nanoantenna, Phys. Rev. Lett. 97 (2006) 017402
- [33] P. Bharadwaj, B. Deutsch, L. Novotny, Optical antennas, Adv. Opt. Photonics 1 (2009) 438-483
- [34] T. V. Shahbazyan, M. I. Stockman, Plasmonics: theory and applications, Springer, 2014
- [35] C. Noguez, Surface plasmons on metal nanoparticles: the influence of shape and physical environment, J. Phys. Chem. 111 (2007) 3806-3819
- [36] C. Dahmen, B. Schmidt, G. von Plessen, Radiation damping in metal nanoparticle pairs, Nano Lett. 7 (2007) 318-322
- [37] P. K. Jain, X. Huang, I. H. El-Sayed, M. A. El-Sayed, Review of some interesting surface plasmon resonance-enhanced properties of noble metal nanoparticles and their applications to biosystem, Plasmonics 2 (2007) 107-118 157
- [38] J. Cao, T. Sun, K. T. V. Grattan, Gold nanorod-based localized surface plasmon resonance biosensors: a review, Sensor. Actuat. B: Chem. 195 (2014) 332-351
- [39] A. A. Marudin, J. R. Sambles, W. L. Barnes, Modern plasmonics, Elsevier, 2014
- [40] H. Kang, G. W. Milton, Solutions to the Polya-Szego conjecture and the weak Eshelby conjecture, Arch. Rational Mech. Anal. 188 (2008) 93-116
- [41] C. F. Bohren, D. R. Huffman, Absorption and scattering of light by small particles, Wiley-VCH, 1998
- [42] A. Alu, N. Engheta, Polarizabilities and effective parameters for collection of spherical nanoparticles formed by pairs of concentric double-negative, single-nagative, and/or double-positive metamaterial layers, J. Appl. Phys. 97 (2005) 094310
- [43] J. Becker, Plasmons as sensors, Springer, 2012
- [44] A. Stalmashonak, G. Seifert, A. Abdolvand, Ultra-short pulsed laser engineered metal-glass nanocomposites, Springer, 2013
- [45] V. A. G. Rivera, O. B. Silva, Y. Ledemi, Y. Messaddeq, E. Marega Jr., Collective plasmon-modes in gain media: quantum emitters and plasmonic nanostructures, Springer, 2014
- [46] X. Chen, G. Zhang, H. Zeng, Q. Guo, W. She, Advances in nonlinear optics, De Gruyter, 2015
- [47] A. S. Rubio, Modified Au-based nanomaterials studied by surface plasmon resonance spectroscopy, Springer, 2015
- [48] M. Shopa, K. Kolwas, A. Derkachova, G. Derkachov, Dipole and quadrupole surface plasmon resonances contribution in formation of near-field images of a gold nanosphere, Opto-Electron. Rev. 18 (2010) 421-428
- [49] M. Kerker, The scattering of light and other electromagnetic radiation, Academic Press, 1969
- [50] C. Noguez, Optical properties of isolated and supported metal nanoparticles, Opt. Mat. 27 (2005) 1204-1211 158
- [51] W. Hergert, T. Wriedt, The Mie theory. Basics and applications, Springer, 2012
- [52] H. Horvath, Gustav Mie and the scattering and absorption of light by particles: historic developments and basics, J. Quant. Spectrosc. Radiat. Transfer. 110 (2009) 787-799
- [53] G. Mie, Beiträge zur Optik trüber Medien speziell kolloidaler Goldlösungen, Ann. Phys. 25 (1908) 377-445
- [54] K. Kolwas, A. Derkachova, M. Shopa, Size characteristics of surface plasmons and their manifestation in scattering properties of metal particles, J. Quant. Spectrosc. Radiat. Transfer. 110 (2009) 1490-1501
- [55] P. B. Johnson, R. W. Christy, Optical constants of the noble metals, Phys. Rev. B 6 (1972) 4370-4379
- [56] N. G. Khlebtsov, Determination of size and concentration of gold nanoparticles from extinction spectra, Anal. Chem. 80 (2008) 6620-6625
- [57] V. P. Drachev, U. K. Chettiar, A. V. Kildishev, H-K. Yuan, W. Cai, V. M. Shalaev, The Ag dielectric function in plasmonic metamaterials, Opt. Express 16 (2008) 1186-1195
- [58] S. Link, M. A. El-Sayed, Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods, J. Phys. Chem. B 103 (1999) 8410-8426
- [59] G. C. Papavassiliou, Optical properties of small inorganic and organic metal particles, Prog. Solid State Chem. 12 (1979) 185-271
- [60] M. M. Alvarez, J. T. Khoury, T. G. Schaaf, M. N. Shafigullin, I. Vezmar, R. L. Whetten, Optical absorption spectra of nanocrystal gold molecules, J. Phys. Chem. B 101 (1997) 3706-3712
- [61] J. A. Schwarz, C. I. Contescu, K. Putyera, Dekker encyclopedia of nanoscience and nanotechnology, tom 5, Marcel Dekker, Inc., 2004
- [62] G. Cao, Y. Wang, Nanostructures and nanomaterials. Synthesis, properties and applications, World Scientific, 2011 159
- [63] S. Berciaud, L. Cognet, P. Tamarat, B. Lounis, Observation of intrinsic size effects in the optical response of individual gold nanoparticles, Nano Lett. 5 (2005) 515-518
- [64] H. Hövel, S. Fritz, A. Hilger, U. Kreibig, M. Vollmer, Width of cluster plasmon resonances: bulk dielectric functions and chemical interface damping, Phys. Rev. B 48 (1993) 18178-18188
- [65] M. Hu, C. Novo, A. Funston, H. Wang, H. Staleva, S. Zou, P. Mulvaney, Y. Xia, G. V. Hartland, Dark-field microscopy studies of single metal nanoparticles: understanding the factors that influence the linewidth of the localized surface plasmon resonance, J. Mater. Chem. 18 (2008) 1949-1960
- [66] A. Alabastri, S. Tuccio, A. Giugni, A. Toma, C. Liberale, G. Das, F. De Agelis, E. Di Fabrizio, R. P. Zaccaria, Molding of plasmonic resonances in metallic nanostructures: dependence of the non-linear electric permittivity on system size and temperature, Materials 6 (2013) 4879-4910
- [67] B. C. Sih, M. O. Wolf, Dielectric medium effects on collective surface plasmon coupling interactions in oligothiophene-linked gold nanoparticles, J. Phys. Chem. B 110 (2006) 22298-22301
- [68] B-H. Choi, H-H. Lee, S. Jin, S. Chun, S-H. Kim, Characterization of the optical properties of silver nanoparticle films, Nanotechnol. 18 (2007) 075706
- [69] P. K. Jain, S. Eustis, M. A. El-Sayed, Plasmon coupling in nanorod assemblies: optical absorption, discrete dipole approximation simulation and exciton-coupling model, J. Phys. Chem. B 110 (2006) 18243-18253
- [70] E. Dulkeith, T. Niedereichholtz, T. A. Klar, J. Feldmann, G. von Plessen, D. I. Gittins, K. S. Mayya, F. Caruso, Plasmon emission in photoexcited gold nanoparticles, Phys. Rev. B 70 (2004) 205424
- [71] A. Melikyan, H. Minassian, On surface plasmon damping in metallic nanoparticles, Appl. Phys. B 78 (2004) 453-455
- [72] N. I. Grigorchuk, Radiative damping of surface plasmon resonance in spheroidal metallic nanoparticle embedded in a dielectric medium, J. Opt. Soc. Am. B 29 (2012) 3404-3411 160
- [73] H. Kuwata, H. Tamaru, K. Esumi, K. Miyano, Resonant light scattering from metal nanoparticles: practical analysis beyond Rayleigh approximation, Appl. Phys. Lett. 83 (2003) 4625-4627
- [74] C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, Plasmon resonances in large noble-metal clusters, New J. Phys. 4 (2002) 93.1-93.8
- [75] M. Hu, H. Petrova, A. R. Sekkinen, J. Chen, J. M. McLellan, Z-Y. Li, M. Marquez, X. Li, Y. Xia, G. V. Hartland, Optical properties of Au-Ag nanoboxes studied by single nanoparticle spectroscopy, J. Phys. Chem. B 110 (2006) 19923-19928
- [76] U. Bovensiepen, H. Petek, M. Wolf, Dynamics at solid state surfaces and interfaces. Volume 2: Fundamentals, Wiley-VCH, 2012
- [77] A. Brandstetter-Kunc, G. Weick, D. Weinmann, R. A. Jalabert, Decay of dark and bright plasmonic modes in a metallic nanoparticle dimer, Phys. Rev. B 91 (2015) 035431
- [78] I. Zorić, M. Zäch, B. Kasemo, C. Langhammer, Gold, platinum and aluminum nanodisk plasmons: material independence, subradiance and damping mechanisms, ACS Nano 5 (2011) 2535-2546
- [79] K. Kolwas, A. Derkachova, Damping rates of surface plasmons for particles of size from nano- to micrometers; reduction of nonradiative decay, J. Quant. Spectrosc. Radiat. Transfer 114 (2013) 45-55
- [80] C. Sönnichsen, Plasmons in metal nanostructures, dysertacja, Ludwig-Maximlians-Universitt, München, 2001
- [81] M. Bosman, E. Ye, S. F. Tan, C. A. Nijhuis, J. K. W. Yang, R. Marty, A. Mlayah, A. Arbouet, C. Girard, M-Y. Han, Surface plasmon damping quantified with an electron nanoprobe, Sci. Rep. 3 (2013) 1312-1318
- [82] U. Kreibig, Small silver particles in photosensitive glass: their nucleation and growth, Appl. Phys. 10 (1976) 255-264
- [83] P. Elia, R. Zach, S. Hazan, S. Kolusheva, Z. Porat, Y. Zeiri, Green synthesis of gold nanoparticles using plant extracts as reducing agents, Int. J. Nanomedicine 9 (2014) 4007-4021 161
- [84] M. Kitching, M. Ramani, E. Marsili, Fungal biosynthesis of gold nanoparticles: mechanism and scale up, Microbial Biotechnol. 8 (2014) 904-917
- [85] V. Nachiyar, S. Sunkar, P. P. Bavabilatha, Biological synthesis of gold nanoparticles using endophytic fungi, Der Pharma Chem. 7 (2015) 31-38
- [86] A. Chauhan, S. Zubair, S. Tufail, A. Sherwani, M. Sajid, S. C. Raman, A. Azam, M. Owais, Fungus-mediated biological synthesis of gold nanoparticles: potential in detection of liver cancer, Int. J. Nanomedicine 6 (2011) 2305-2319
- [87] S. Alex, A, Tiwari, Functionalized gold nanoparticles: synthesis, properties and applications – a review, J. Nanosci. Nanotechnol. 15 (2015) 1869-1894
- [88] M. Shah, V. Badwaik, Y. Kherde, H. K. Waghwani, T. Modi, Z. P. Aguilar, H. Rodgers, W. Hamilton, T, Marutharaj, C. Webb, M. B. Lawrenz, R. Dakshinamurthy, Gold nanoparticles various methods of synthesis and antibacterial applications, Front. Biosci. 19 (2014) 1320-1344
- [89] M. A. Malik, M. Y. Wani, M. A. Hashim, Microemulsion method: a novel route to synthesize organic and inorganic materials: 1st Nano Update, Arab. J. Chem. 5 (2012) 397-417
- [90] C-J. Huang, Y-H. Wang, P-H. Chiu, M-C. Shih, T-H. Meen, Electrochemical synthesis of gold nanocubes, Mat. Lett. 60 (2006) 1896-1900
- [91] M. T. Reetz, W. Helbig, Size-selective synthesis of nanostructured transition metal clusters, J. Am. Chem. Soc. 116 (1994) 7401-7402
- [92] F. Correard, K. Maximova, M-A. Esteve, C. Villard, M. Roy, A. Al-Kattan, M. Sentis, M. Gingras, A. V. Kabashin, D. Braguer, Gold nanoparticles prepared by laser ablation in aqueous biocompatible solutions: assessment of safety and biological identity for nanomedicine applications, Int. J.Nanomdicine 9 (2014) 5415-5430
- [93] M. K. Corbierre, J. Beerens, R. B. Lennox, Gold nanoparticles generated by electron beam lithography of gold (I) – thiolate thin films, Chem. Mater. 17 (2005) 5774-5779 162
- [94] C. Louis, O. Pluchery, Gold nanoparticles for physics, chemistry and biology, Imperial College Press, 2012
- [95] C. V. Thompson, Solid-state dewetting of thin films, Annu. Rev. Mater. Res. 42 (2012) 9.1-9.36
- [96] S. Imamova, A. Dikovska, N. Nedyalkov, P. Atanasov, M. Sawczak, R. Jendrzejewski, G. Śliwiński, M. Obara, Laser nanostructuring of thin Au films for applications in surface enhanced Raman spectroscopy, J. Optoelectron. Adv. Mater. 12 (2010) 500-504
- [97] A. Sengupta, C. K. Sarkar, Introduction to Nano. Basics to nanoscience and nanotechnology, Springer, 2015
- [98] T. Stuchinskaya, M. Moreno, M. J. Cook, D. R. Edwards, D. A. Russell, Targeted photodynamic therapy of breast cancer cells using antibody-phthalocyanine-gold nanoparticle conjugates, Photochem. Photobiol. Sci. 10 (2011) 822-831
- [99] S. S. Lucky, K. C. Soo, Y. Zhang, Nanoparticles in photodynamic therapy, Chem. Rev. 115 (2015) 1990-2042
- [100] P. Ghosh, G. Han, M. De, C. K. Kim, V. M. Rotello, Gold nanoparticles in delivery applications, Adv. Drug Deliv. Rev. 60 (2008) 1307-1315
- [101] S. Rana, A. Bajaj, R. Mout, V. M. Rotello, Monolayer coated gold nanoparticles for delivery applications, Adv. Drug Deliv. Rev. 64 (2012) 200-216
- [102] A. J. Mieszawska, W. J. M. Mulder, Z. A. Fayad, D. P. Cormode, Multifunctional gold nanoparticles for diagnosis and therapy of disease, Mol. Pharmaceutics 10 (2013) 831-847
- [103] S. Sharma, J. Zapatero-Rodriguez, P. Estrela, R. O’Kennedy, Point-of-care diagnostics in low resource settings: present status and future role of microfluidics, Biosensors 5 (2015) 577-601
- [104] M. M. Giangregorio, M. Losurdo, G. V. Bianco, E. Dilonardo, P. Capezzuto, G. Bruno, Synthesis and characterization of plasmon resonant gold nanoparticles and grapheme for photovoltaics, Mat. Sci. Eng. B 178 (2013) 559-567 163
- [105] M. Notarianni, K. Vernon, A. Chou, M. Aljada, J. Liu, N. Motta, Plasmonic effect of gold nanoparticles in organic cells, Sol. Energy 106 (2014) 23-37
- [106] Y. Li, H. J. Schluesener, S. Xu, Gold nanoparticle-based biosensors, Gold Bull. 43 (2010) 29-41
- [107] H. Chen, X. Kou, Z. Yang, W. Ni, J. Wang, Shape- and size-dependent refractive index sensitivity of gold nanoparticles, Langmuir 24 (2008) 5233-5237
- [108] M. G. Banaee, K. B. Crozier, Gold nanorings as substrates for surface-enhanced Raman scattering, Opt. Lett. 35 (2010) 760-762
- [109] S. Nie, S. R. Emory, Probing single molecules and single nanoparticles by surface-enhanced Raman scattering, Science 275 (1997) 1102-1106
- [110] F. Tian, F. Bonnier, A. Casey, A. E. Shanahan, H. J. Byrne, Surface enhanced Raman scattering with gold nanoparticles: effect of particle shape, Anal. Methods 6 (2014) 9116-9123
- [111] Z-Y. Li, Y. Xia, Metal nanoparticles with gain toward single-molecule detection by surface-enhanced Raman scattering, Nano Lett. 10 (2010) 243-249
- [112] C. Mu, J. –P. Zhang, D. Xu, Au nanoparticle arrays with tunable particle gaps by template-assisted electroless deposition for high performance surface-enhanced Raman scattering, Nanotechnol. 21 (2010) 015604-015609
- [113] K. Saha, S. S. Agasti, C. Kim, X. Li, V. M. Rotello, Gold nanoparticles in chemical and biological sensing, Chem. Rev. 112 (2012) 2739-2779
- [114] J. Bischof, D. Scherer, S. Herminghaus, P. Leiderer, Dewetting modes of thin metallic films: nucleation and spinoidal dewetting, Phys. Rev. Lett. 77 (1996) 1536-1539
- [115] S. J. Henley, J. D. Carey, S. R. P. Silva, Pulsed-laser-induced nanoscale island formation in thin metal-on-oxide films, Phys. Rev. B 72 (2005) 195408 164
- [116] S. J. Henley, J. D. Carey, S. R. P. Silva, Laser-nanostructured Ag films as substrates for surface enhanced Raman spectroscopy, Appl. Phys. 88 (2006) 081904
- [117] S. J. Henley, J. D. Carey, S. R. P. Silva, Metal nanoparticle production by pulsed laser nanostructuring of thin metal films, Appl. Surf. Sci. 253 (2007) 8080-8085
- [118] F. Ruffino, E. Carria, S. Kimiagar, I. Crupi, F. Simone, M. G. Grimaldi, Formation and evolution of nanoscale metal structures on ITO surface by nanosecond laser irradiation of thin Au and Ag films, Sci. Adv. Mater. 4 (2012) 708-718
- [119] F. Ruffino, E. Carria, S. Kimiagar, I. Crupi, M. G. Grimaldi, Rayleigh-instability-driven dewetting of thin Au and Ag films on indium-tin-oxide, Micro Nano Lett. 8 (2013) 127-130
- [120] F. Ruffino, A. Pugliara, E. Carria, L. Romano, C. Bongiorno, C. Spinella, M. G. Grimaldi, Novel approach to the fabrication of Au/silica core-shell nanostructures based on nanosecond laser irradiation of thin Au films on Si, Nanotechnol. 23 (2012) 045601
- [121] S. Yadavali, M. Khenner, R. Kalyanaraman, Pulsed laser dewetting of Au films: experiments and modeling of nanoscale behavior, J. Mater. Res. 28 (2013) 1715-1723
- [122] K. Ratautas, M. Gedvilas, B. Voisiat, G. Raciukaitis, A. Grigonis, Transformation of a thin gold film to nanoparticles after nanosecond – laser irradiation, J. Laser Micro. Nanoen. 7 (2012) 355-361
- [123] K. Ratautas, M. Gedvilas, G. Raciukaitis, A. Grigonis, Nanoparticle formation after nanosecond-laser irradiation of thin gold films, J. Appl. Phys. 112 (2012) 013108
- [124] C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldman, Drastic reduction of plasmon damping in gold nanorods, Phys. Rev. Lett. 88 (2002) 077402
- [125] P. A. Atanasov, N. N. Nedyalkov, A. Og. Dikovska, Ru. Nikov, S. Amaruso, X. Wang, R. Bruzzese, K. Hirano, H. Shimitzu, M. Terakawa, 165 M. Obara, Noble metallic nanostructures: preparation, properties, applications, J. Phys.: Conf. Ser. 514 (2014) 012024
- [126] J. Böhlmark, Fundamentals of high power impulse magnetron sputtering, dysertacja, Institute of Technology, Linköping University, 2005
- [127] J. Ziaja, Cienkowarstwowe struktury metaliczne i tlenkowe. Właściwości, technologia, zastosowania w elektrotechnice, Oficyna Wydawnicza Politechniki Wrocławskiej, 2012
- [128] E. G. Bauer, Phänomenologische Theorie der Kristallabscheidung an Oberflächen I., Z. Kristallogr. 110 (1958) 372-394
- [129] P. G. de Gennes, Wetting: statics and dynamics, Rev. Mod. Phys. 57 (1985) 827-863
- [130] D. Bonn, J. Eggers, J. Indekeu, J. Meunier, E. Rolley, Wetting and spreading, Rev. Mod. Phys. 81 (2009) 739-805
- [131] L. Leandro, R. Malureanu, N. Rozlosnik, A. Lavrinenko, Ultrathin, ultrasmooth gold layer on dielectric without use of additional metallic adhesion layers, ACS Appl. Mater. Interfaces 7 (2015) 5797-5802
- [132] L. Zhang, F. Cosandey, R. Persaud, T. E. Madey, Intial growth and morphology of thin Au films on TiO2 (110), Surf. Sci. 439 (1999) 73-85
- [133] F. Ruffino, M. G. Grimaldi, Island-to-percolation transition during the room-temperature growth of sputtered nanoscale Pd films on hexagonal SiC, J. Appl. Phys. 107 (2010) 074301
- [134] M. Geoghegan, G. Krausch, Wetting at polymer surfaces and interfaces, Prog. Polym. Sci. 28 (2003) 261-302
- [135] J. Hodak, I. Martini, G. V. Hartland, Ultrafast study of electron-phonon coupling in colloidal gold particles, Chem. Phys. Lett. 284 (1998) 135-141
- [136] Z. Kędzierski, J. Stępiński, Elektronowy mikroskop skaningowy (SEM), UWN AGG
- [137] A. Oleś, Metody doświadczalne fizyki ciała stałego, WNT, 1998 166
- [138] http://encyklopedia.pwn.pl/haslo/mikroskop-elektronowyskaningowy;3941325.html (dostęp w dniu 21.06.2016)
- [139] R. Mazurkiewicz, Metody spektroskopowe i ich zastosowanie do identyfikacji związków organicznych, WNT, 2000
- [140] Z. Kęcki, Podstawy spektroskopii molekularnej, Wydawnictwo Naukowe PWN, 1992
- [141] E. Smith, G. Dent, Modern Raman spectroscopy – a practical approach, John Wiley & Sons, 2005
- [142] P. Nykiel, Spektroskopia Ramana: nowoczesna technika w diagnostyce medycznej i analizie biochemicznej, Biul. Wydz. Farm. WUM 4 (2013) 27-36
- [143] J. Chan, S. Fore, S. Wachsmann-Hogiu, T. Huser, Raman spectroscopy and microscopy of individual cells and cellular components, Laser Photonic Rev. 2 (2008) 325-349
- [144] L. Jensen, G. C. Schatz, Resonance Raman scattering of rhodamine 6G as calculated using time-dependent density functional theory, J. Phys. Chem. Lett. 110 (2006) 5973-5977
- [145] R. L. McCreery, Raman spectroscopy for chemical analysis, John Wiley & Sons, 2000
- [146] R. Aroca, Surface-enhanced vibrational spectroscopy, John Wiley & Sons, 2006
- [147] M. Fan, G. F. S. Andrade, A. G. Brolo, A review on the fabrication of the substrates for surface enhanced Raman spectroscopy and their applications in analytical chemistry, Anal. Chim. Acta 693 (2011) 7-25
- [148] A. Cygański, Metody elektroanalityczne, WNT, 1991
- [149] A. Cygański, Podstawy metod elektroanalitycznych, WNT, 1999
- [150] A. Bard, L. R. Faulkner, Electrochemical methods: Fundamental and applications, John Wiley & Sons, 2001
- [151] G. A. Mabbott, An introduction to cyclic voltammetry, J. Chem. Educ. 60 (1983) 697-701 167
- [152] https://code.google.com/archive/p/psa-macro/ (dostęp w dniu 31.10.2016)
- [153] C. Favazza, R. Kalyanaraman, R. Sureshkumar, Robust nanopatterning by laser-induced dewetting of metal nanofilms, Nanotechnol. 17 (2006) 4229-4234
- [154] Y. Wu, J. D. Fowlkes, P. D. Rack, The optical properties of Cu-Ni nanoparticles produced via pulsed laser dewetting of ultrathin films: the effect of nanoparticle size and composition on the plasmon response, J. Mater. Res. 26 (2011) 277-287
- [155] S. Herminghaus, K. Jacobs, K. Mecke, J. Bischof, A. Fery, M. Ibn-Elhaj, S. Schlagowski, Spinoidal dewetting in liquid crystal and liquid metal films, Science 282 (1998) 916-919
- [156] H. Krishna, C. Favazza, A. K. Gongopadhyay, R. Kalyanaraman, Functional dewetting through nanosecond laser dewetting of thin metal films, JOM 60 (2088) 37-42
- [157] H. Krishna, R. Sachan, J. Strader, C. Favazza, M. Khener, R. Kalyanaraman, Thickness-dependent spontaneous dewetting morphology of ultrathin Ag films, Nanotechnol. 21 (2010) 155601
- [158] J. Trice, D. Thomas, C. Favazza, R. Sureshkumar, R. Kalyanaraman, Pulsed-laser-induced dewetting in nanoscopic metal films: theory and experiments, Phys. Rev. B 75 (2007) 235439
- [159] K. Grochowska, K. Siuzdak, G. Śliwiński, Properties of an Indium Tin Oxide electrode modified by a laser nanostructured thin Au film for biosensing, Eur. J. Inorg. Chem. 7 (2015) 1275-1281
- [160] N. Eustathopoulos, B. Drevel, E. Ricci, Temperature coefficient of surface tension for pure liquid metals, J. Crystal Growth 191 (1998) 268-274
- [161] D. Bauerle, Laser processing and chemistry, Springer, 2000
- [162] A. Vrij, Possible mechanism for the spontaneous rupture of thin, free liquid films, Discuss. Faraday Soc. 42 (1966) 23-33
- [163] A. Sharma, E. Ruckenstein, Finite-amplitude instability of thin free and wetting films: prediction of lifetimes, Langmuir 2 (1986) 480-494 168
- [164] C. Favazza, H. Krishna, R. Sureshkumar, R. Kalyanaraman, Nanomanufacturing via fast laser-induced self-organization in thin metal films, Proc. SPIE (2007) 664809
- [165] Ru. G. Nikov, N. N. Nedyalkov, P. A. Atanasov, D. Hirsch, B. Rauschenbach, K. Grochowska, G. Śliwiński, Characterization of Ag nanostructures fabricated by laser-induced dewetting of thin films, Appl. Surf. Sci. 374 (2016) 36-41
- [166] C. Favazza, J. Trice, A. K. Gangopadhyay, H. Garcia, R. Sureshkumar, R. Kalyanaraman, Nanoparticle ordering by dewetting of Co on SiO2, J. Electron. Mater 35 (2006) 1618-1620
- [167] P. K. Jain, W. Huang, M. A. El-Sayed, On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: a plasmon ruler equation, Nano Lett. 7 (2007) 2080-2088
- [168] R. Ruppin, Surface modes and optical absorption of a small sphere above a substrate, Surf. Sci. 127 (1983) 108-118
- [169] C. E. Roman-Velazquez, C. Noguez, R. G. Barrera, Substrate effects on the optical properties of spheroidal nanoparticles, Phys. Rev. B 61 (2000) 10427-10436
- [170] R. Lazzari, S. Roux, I. Simonsen, J. Jupille, D. Bedeaux, J. Vlieger, Multipolar plasmon resonances in supported silver particles: the case of Ag/α-Al2O3(0001), Phys. Rev. B 65 (2002) 235424
- [171] M. Kracker, C. Worsch, C. Russel, Optical properties of palladium nanoparticles under exposure of hydrogen and inert gas prepared by dewetting synthesis of thin-sputtered layers, J. Nanopart. Res. 15 (2013) 1594:1-10
- [172] W. Heiss, N. T. K. Thanh, J. Aveyard, D. G. Fernig, Determination of size and concentration of gold nanoparticles from UV-Vis spectra, Anal. Chem. 79 (2007) 4215-4221
- [173] T. Ziegler, C. Hendrich, F. Hubenthal, T. Vartanyan, F. Träger, Dephasing times of surface plasmon excitation in Au nanoparticles determined by persistent spectral hole burning, Chem. Phys. Lett. 386 (2004) 319-324 169
- [174] F. Hubenthal, Ultrafast dephasing time of localized surface plasmon polariton resonance and the involved damping mechanisms in colloidal gold nanoparticles, Prog. Surf. Sci. 82 (2007) 378-387
- [175] Y. Nishijima, L. Rosa, S. Juodkazis, Surface plasmon resonances in periodic and random patterns of gold nano-disks for broadband light harvesting, Opt. Express 10 (2010) 11466-11477
- [176] https://www.ossila.com/products/ito-glass-substrate (dostęp w dniu 09.12.2016)
- [177] K. Grochowska, K. Siuzdak, J. Karczewski, G. Śliwiński, Functionalization of indium-tin-oxide electrodes by laser-nanostructured gold thin films for biosensing applications, Appl. Surf. Sci. 357 (2015) 1684-1691
- [178] http://www.knittelglass.com/Download/data%20sheet_OT_eng.pdf (dostęp w dniu 09.12.2016)
- [179] E. Simsek, Effective refractive index approximation and surface plasmon resonance modes of metal nanoparticle chains and arrays, PIERS Online 5 (2009) 629-632
- [180] H. Shu, G. Chang, Z. Wang, P. Li, Y. Zhang, Y. He, Pulse laser deposition fabricating gold nanoclusters on a glassy carbon surface for nonenzymatic glucose sensing, Anal. Sci. 31 (2015) 609-616
- [181] N. German, A. Ramanavicius, A. Ramanaviciene, Electrochemical deposition of gold nanoparticles on graphite rod for glucose biosensing, Sens. Actuators B 203 (2014) 25-34
- [182] J-E. Lim, S. H. Ahn, S. G. Pyo, H. Son, J. H. Jang, S-K. Kim, Glucose oxidation on gold-modified copper electrode, Bull. Korean Chem. Soc. 34 (2013) 2685-2690
- [183] Y. Ma, J. Di, X. Yan, M. Zhao, Z. Lu, Y. Tu, Direct electrodeposition of gold nanoparticles on indium tin oxide surface and its application, Biosens. Bioelectron. 24 (2009) 1480-1483
- [184] B. Ballarin, M. C. Cassani, C. Moccato, A. Gasparotto, RF-sputtering preparation of gold-nanoparticle-modified ITO electrodes for electrocatalytic applications, Nanotechnol. 22 (2011) 275711 170
- [185] L. Kerkache, A. Layadi, E. Dogheche, D. D. Remiens, Physical properties of RF sputtered ITO thin films and annealing effect, J. Phys. D: Appl. Phys. 39 (2006) 184-189
- [186] J. O. Park, J. H. Lee, J. J. Kim, S. H. Cho, Y. K. Cho, Crystallization of indium tin oxide thin films prepared by RF-magnetron sputtering without external heating, Thin Solid Films 747 (2005) 127-132
- [187] Y. S. Jung, D. W. Lee, D. Y. Jeon, Influence of dc magnetron sputtering parameters on surface morphology of indium tin oxide thin films, Appl. Surf. Sci. 221 (2004) 136-142
- [188] F. Ruffino, I. Crupi, E. Carria, S. Kimiagar, F. Simone, M. G. Grimaldi, Nanostructuring thin Au films on transparent conductive oxide substrates, Mat. Sci. Eng. B 178 (2013) 533-541
- [189] A. M. Michaels, M. Nirmal, L. E. Brus, Surface enhanced Raman spectroscopy of individual Rhodamine 6G molecules on large Ag nanocrystals, J. Am. Chem. Soc. 121 (1999) 9932-9939
- [190] Y. X. Zhang, J. Zheng, G. Gao, Y. F. Kong, Z. Zhi, K. Wang, X. Q. Zhang, D. X. Cui, Biosynthesis of gold nanoparticles using chloroplast, Int. J. Nanomedicine 6 (2011) 2899-2906
- [191] A. Barhoumi, D. Zhang, F. Tam, N. J. Halas, Surface-enhanced Raman spectroscopy of DNA, J. Am. Chem. Soc. 130 (2008) 5523-5529
- [192] D. L. Jeanmaire, R. P. Van Duyne, Surface Raman spectroelectrochemistry: Part I. Heterocyclic, aromatic and aliphatic amines adsorbed on the anodized silver electrode, J. Electroanal. Chem. 84 (1974) 1-20
- [193] R. Gupta, W. A. Weimer, High enhancement factor gold films for surface enhanced Raman spectroscopy, Chem. Phys. Lett. 374 (2003) 302-306
- [194] K. Grochowska, K. Siuzdak, P. A. Atanasov, C. Bittencourt, A. Dikovska, N. N. Nedyalkov, G. Śliwiński, Properties of plasmonic arrays produced by pulsed-laser nanostructuring of thin Au films, Beilstein J. Nanotechnol. 5 (2014) 2102-2112 171
- [195] P. M. Tessier, O. D. Velev, A. T. Kalambur, J. F. Rabolt, A. M. Lenhoff, E. W. Kaler, Assembly of gold nanostructured films templated by colloidal crystals and use in surface-enhanced Raman spectroscopy, J. Am. Chem. Soc. 122 (2000) 9554-9555
- [196] S. Mahajan, T. Hutter, U. Steiner, P. G. Oppenheimer, Tunable microstructured surface-enhanced Raman scattering substrates via electrohydrodynamic lithography, J. Phys. Chem. Lett. 4 (2013) 4153-4159
- [197] E. Fazio, F. Neri, C. D’Andrea, P. M. Ossi, N. Santo, S. Trusso, SERS activity of pulsed laser ablated silver thin films with controlled nanostructure, J. Raman Spectrosc. 42 (2011) 1298-1304
- [198] A. Li, Z. Baird, S. Bag, D. Sarkar, A. Prabhath, T. Pradeep, R. G. Cooks, Using ambient ion beams to write nanostructured patterns for surface enhanced Raman spectroscopy, Angew. Chem. 126 (2014) 12736-12739
- [199] W. Cheng, S. Dong, E. Wang, Gold nanoparticles as fine tuners of electrochemical properties of the electrode/solution interface, Langmuir 18 (2002) 9947-9952
- [200] Y. Song, Y. Ma, Y. Wang, J. Di, Y. Tu, Electrochemical deposition of gold-platinum alloy nanoparticles on an indium tin oxide electrode and their electrocatalytic applications, Electrochim. Acta 55 (2010) 4909-4914
- [201] A. T. B. Silva, A. G. Coehlo, L. C. S. Lopes, M. V. A. Martins, F. N. Crespilho, A. Merkoci, W. C. da Silva, Nano-assembled supramolecular films from chitosan-stabilized gold nanoparticles and cobalt (II) phthalocyanine, J. Braz. Chem. Soc. 24 (2013) 1237-1240
- [202] http://apps.who.int/iris/bitstream/10665/204871/1/9789241565257_eng.pdf?ua =1 (dostęp w dniu 11.01.2017)
- [203] J. Wang, X. Cao, X. Wang, S. Yang, R. Wang, Electrochemical oxidation and determination of glucose in alkaline media based on Au(111)-like nanoparticle on indium tin oxide electrode, Electrochim. Acta 138 (2014) 174-186 172
- [204] K. E. Toghill, R. G. Compton, Electrochemical non-enzymatic glucose sensors: a perspective and an evaluation, Int. J. Electrochem. Sci. 5 (2010) 1246-1301
- [205] Y. Bai, W. Yang, Y. Sun, C. Sun, Enzyme-free glucose sensor based on a three-dimensional gold film electrode, Sens. Actuators B: Chem. 134 (2008) 471-476
- [206] A. Kaczmarczyk, A. Celebańska, W. Nogala, V. Sashuk, O. Chernyaeva, M. Opallo, Electrocatalytic glucose oxidation at gold and gold-carbon nanoparticulate film prepared from oppositely charged nanoparticles, Electrochim. Acta 117 (2014) 211-216
- [207] G. Chang, H. Shu, K. Ji, M. Oyama, X. Liu, Y. He, Gold nanoparticles directly modified glassy carbon electrode for non-enzymatic detection of glucose, Appl. Surf. Sci. 288 (2014) 524-529
- [208] J. Zhao, X. Kong, W. Shi, M. Shao, J. Han, M. Wei, D. G. Evans, X. Duan, Self-assembly of layered double hydroxide nanosheets/Au nanoparticles ultrathin films for enzyme-free electrocatalysis of glucose, J. Mater. Chem. 21 (2011) 13926-13933
- [209] C. Jin, Z. Chen, Electrocatalytic oxidation of glucose on gold-platinum nanocomposite electrodes and platinum-modified gold electrodes, Synth. Met. 157 (2007) 592-596
- [210] T. Wang, S. Li, M. Jia, C. Guo, J. Hu, A seed-mediated growth process for the fabrication of a novel gold nanoparticles-attached NH2 + ions implantation-modified indium tin oxide electrode and its electrocatalytic activity, Colloids Surf. A: Physicochem. Eng. Aspects 434 (2013) 229-235
- [211] J. Wang, L. Wang, J. Di, Y. Tu, Electrodeposition of gold nanoparticles on indium/tin oxide electrode for fabrication of a disposable hydrogen peroxide biosensor, Talanta 77 (2009) 1454-1459
- [212] M. Pasta, R. Ruffo, E. Falleta, C. M. Mari, C. Della Pina, Alkaline glucose oxidation on nanostructured gold electrodes, Gold Bull. 43 (2010) 57-64 173
- [213] Z. Borkowska, A. Tymosiak-Zielińska, G. Shul, Electrooxidation of methanol on polycrystalline and single crystal gold electrodes, Electrochim. Acta 49 (2004) 1209-1220
- [214] C. Guo, H. Huo, X. Han, C. Xu, H. Li, Ni/CdS bifunctional Ti@TiO2 core-shell nanowire electrode for high-performance nonenzymatic glucose sensing, Anal. Chem. 86 (2014) 876-883
- [215] F. Xu, K. Cui, Y. Sun, C. Guo, Z. Liu, Y. Zhang, Y. Shi, Z. Li, Facile synthesis of urchin-like gold submicrostructures for nonenzymatic glucose sensing, Talanta 82 (2010) 1845-1852
- [216] Y. Fu, F. Liang, H. Tian, J. Hu, Nonenzymatic glucose sensor based on ITO electrode modified with gold nanoparticles by ion implantation, Electrochim. Acta 120 (2014) 314-318
- [217] S. Q. Liu, H. X. Ju, Reagentless glucose biosensor based on direct electron transfer of glucose oxidase immobilized on colloidal gold modified carbon paste electrode, Biosens. Bioelectron. 19 (2003) 177-183.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ed60aeeb-8e3f-4aff-af4f-33f3f7c46341
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.