PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Ovarian cancer diagnosis using pretrained mask CNN-based segmentation with VGG-19 architecture

Identyfikatory
Warianty tytułu
Konferencja
4th Jagiellonian Symposium on Advances in Particle Physics and Medicine, Krakow, 10-15 July 2022
Języki publikacji
EN
Abstrakty
EN
Objectives: This paper proposed the neural network-based segmentation model using Pre-trained Mask Convolutional Neural Network (CNN) with VGG-19 architecture. Since ovarian is very tiny tissue, it needs to be segmented with higher accuracy from the annotated image of ovary images collected in dataset. This model is proposed to predict and suppress the illness early and to correctly diagnose it, helping the doctor save the patient's life. Methods: The paper uses the neural network based segmentation using Pre-trained Mask CNN integrated with VGG-19 NN architecture for CNN to enhance the ovarian cancer prediction and diagnosis. Results: Proposed segmentation using hybrid neural network of CNN will provide higher accuracy when compared with logistic regression, Gaussian naïve Bayes, and random Forest and Support Vector Machine (SVM) classifiers.
Słowa kluczowe
Rocznik
Strony
84--95
Opis fizyczny
Bibliogr. 20 poz., rys., tab.
Twórcy
  • Department of Computer Science, Periyar University, Salem, India
  • Department of Computer Science, Government Arts and Science College for Women, Bargur, India
Bibliografia
  • 1. Kalaiarasai A, Mohamed Amanulla K. Unconscious oral cancer detection using data mining segmentation approaches. Int J Adv Res Comput Eng Technol 2015;4:3177-84.
  • 2. Jothi S, Anitha S. Data mining segmentation techniques applied for cancer disease - a case study using Xlminer. Int J Eng Res Technol 2012;1:1-8.
  • 3. Dangare CS, Apte SS. Improved study of heart disease prediction system using data mining classification techniques. Int J Comput Appl 2012;47:44-8.
  • 4. Hachesu PR, Ahmadi M, Alizadeh S, Sadoughi F. Use of data mining techniques to determine and predict length of stay of cardiac patients. Healthc Inf Res 2013;19:121-9.
  • 5. Vijiyarani S, Sudha S. Disease prediction in data mining techniquea survey. Int J Comput Appl Inf Technol 2013;2:17-21.
  • 6. Mazzini M, Giorgi F. The follicle cell-oocyte interaction in ovarian follicles of the stick insect Bacillus Rossius (Rossi): (Insecta: Phasmatodea). J Morphol 1985;185:37-49.
  • 7. Bastock R, St Johnston D. Drosophila oogenesis. Curr Biol 2008; 18:1082-7.
  • 8. Browne CL, Werner W. Intercellular junctions between the follicle cells and oocytes of Xenopus laevis. J Exp Zool 1984;230: 105-13.
  • 9. Wu M, Yan C, Liu H, Liu Q. Automatic segmentation of ovarian cancer types from cytological images using deep convolutional neural networks. Biosci Rep 2018;38:1-7.
  • 10. Shafi U, Sharma S. Ovarian cancer detection in MRI images using feature space and segmentation method. Int J Recent Technol Eng 2019;8:545-51.
  • 11. Nuhić J, Spahić L, Ćordić S, Kevrić J. Comparative study on different classification techniques for ovarian cancer detection. In: International conference on medical and biological engineering. Springer, Cham; 2019.
  • 12. Mikami M, Tanabe K, Matsuo K, Ikeda M, Hayashi M, Yasaka M, et al. Early ovarian cancer detection by deep learning: twodimensional comprehensive serum glycopeptide spectra analysis. Gynecol Oncol 2020;159(1 Suppl):79-80.
  • 13. Yue Z, Sun C, Chen F, Zhang Y, Xu W, Shabbir S, et al. Machine learning-based LIBS spectrum analysis of human blood plasma allows ovarian cancer diagnosis. Biomed Opt Express 2021;12: 2559-74.
  • 14. Skubitz APN, Boylan KLM, Geschwind K, Cao Q, Starr TK, Geller MA, et al. Simultaneous measurement of 92 serum protein biomarkers for the development of a multiprotein classifier for ovarian cancer detection. Canc Prev Res 2019;12:171-84.
  • 15. Urase Y, Nishio M, Ueno Y, Kono AK, Sofue K, Kanda T, et al. Simulation study of low-dose sparse-sampling CT with deep learning-based reconstruction: usefulness for evaluation of ovarian cancer metastasis. Appl Sci 2020;10:4446-52.
  • 16. Wu C, Wang Y, Wang F. Deep learning for ovarian tumor classification with ultrasound images. In: Pacific rim conference on multimedia. Springer, Cham; 2018.
  • 17. Gao Y, Cai G, Li H, Li X, Song K, Lv W, et al. Diagnosis and prognosis prediction of ovarian cancer with feedforward neural network by mining real-world laboratory tests. Gynecol Oncol 2020;159(1 Suppl):338-9.
  • 18. Wang S, Zhenyu L, Rong Y, Zhou B, Bai Y, Wei W, et al. Deep learning provides a new computed tomography-based prognostic biomarker for recurrence prediction in high-grade serous ovarian cancer. Radiother Oncol 2019;132:171-7.
  • 19. Khazendar S, Sayasneh A, Al-Assam H, Du H, Kaijser J, Ferrara L, et al. Automated characterisation of ultrasound images of ovarian tumours: the diagnostic accuracy of a support vector machine and image processing with a local binary pattern operator. Facts Views Vis Obgyn 2020;7:7-15.
  • 20. Masood A, Sheng B, Li P, Hou X, Wei X, Qin J, et al. Computerassisted decision support system in pulmonary cancer detection and stage classification on CT images. J Biomed Inf 2018;79: 117-28.
Uwagi
Opublikowane przez Sciendo. Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ed58d8de-19ac-41bd-b1d1-e2f98de91465
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.