PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Shaping of axially compressed bipolarly prestressed closely spaced built-up members

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents a method of shaping and describing the geometry of bipolarly prestressed closely spaced built-up member with symmetrical supports and a bisymmetrical cross-section. The following has been defined as a function dependant on the position along the length of the x section of the closely spaced built-up member with determined geometrical parameters: intial elastic y0(x) of the closely spaced built-up member chord in the prestressing zone, distance between the chords in the clear si(x), moment of inertia Ji(x) relative to main axes and eccentricity ei(x) of compressive force in a single chord. The length of the extreme section L1 and the prestressing zone L2, the maximum distance between chords smax in the clear and the geometric characteristics of a single chord section were assumed. A full and correct description of the geometry of bipolarly prestressed closely spaced built-up members is necessary to start the static and stress analysis. As a result of the introduction of a bipolar displacement prestressing into the closely spaced built-up member, the moment of inertia increases in the middle part with respect to the non-material axis z. It allows predicting the increase of the critical load bearing capacity of the closely spaced built-up member. The load bearing capacity of bipolarly prestressed closely spaced built-up members was estimated using the modified Engesser’s formula for two-chord closely spaced built-up member with rigid battens. For selected pair of channel sections, the analytical critical load estimation results were verified using FEM.
Rocznik
Strony
87--100
Opis fizyczny
Bibliogr. 45 poz.
Twórcy
  • PhD Eng.; Kielce University of Technology, Faculty of Civil Engineering and Architecture, Al. Tysiąclecia Państwa Polskiego 7, 25-314 Kielce, Poland
Bibliografia
  • [1] Chesson, E. Jr., & Munse, W. H. (1963). Riveted and Bolted Joints: Truss-Type Tensile Connections. J. Struct. Div., 89(1), 67-106.
  • [2] McCormac, M. C., & Csernak, S. F. (2012). Structural steel design. New Jersey: Prentice Hall.
  • [3] Subramanian, N. (2010). Steel Structures. Design and practice. New Delhi: Oxford University Press.
  • [4] Büttner, O., & Stenker, H. (1975). Light metal constructions. Warsaw: Arkady. (in Polish)
  • [5] Space structures (1985). edited by Bródka, J. Arkady: Warsaw. (in Polish)
  • [6] Chilton, J. (2000). Space grid structures. Oxford: Architectural Press.
  • [7] Porto, C. E. (2014). The innovative structural conception in Stéphane du Château’s work: from metallic trusses to the development of spatial frames. Architectus 4, 51-64.
  • [8] Kowal, Z. (2011). The formation of space bar structures supported by the system reliability theory. Arch. Civ. Mech. Eng. 11(1), 115-133.
  • [9] Kowal, Z., Piotrowski, R., & Szychowski, A. (2012). Adaptation of halls with roof covering to solar radiation energy extraction. Zeszyty Naukowe Politechniki Rzeszowskiej, 283, 59(2/2012/II), 431-438 (in Polish).
  • [10] Kowal, Z., Siedlecka, M., Piotrowski, R., Brzezińska, K., Otwinowska, K., & Szychowski, A. (2015). Shapes of energy-active segments of steel buildings. Arch. Civ. Eng., 61(3), 119-132.
  • [11] Kubicka, K., Radoń, U., Szaniec, W., & Pawlak, U. (2017). Comparative Analysis of the Reliability of Steel Structure with Pinned and Rigid Nodes Subjected to Fire. IOP Conf. Ser.: Mater. Sci. Eng. 245, 022051 1-9.
  • [12] Timoshenko, S. P. (1966). History of strength of materials. Warsaw: Arkady (in Polish).
  • [13] Engesser, F. (1889). Über Knickfestigkeitgerader Stäbe. Zeitschriftfür Architekten und Ingenieurwesen, 35(4), 455-462.
  • [14] Haringx, J. A. (1949). Elastic stability of helical springs at a compression larger than original length. Appl. Sci. Res., 1(1), 417-434.
  • [15] Bleich, F. (1952). Buckling strength of metal structures. New York: Mc Graw-Hill.
  • [16] Timoshenko, S. P., & Gere, J. M. (1963). Theory of elastic stability. Warsaw: Arkady (in Polish).
  • [17] Kowal, Z. (2001). About the critical load bearing capacity of battened columns. Inżynieria i Budownictwo, 10, 580-582 (in Polish).
  • [18] Bažant, Z. P. (2003). Shear Buckling of Sandwich, Fiber Composite and Lattice Columns, Bearings, and Helical Springs: Paradox Resolved. J. Appl. Mech., 70, 75-83.
  • [19] Aslani, F., & Goel, S. C. (1991). An Analytical Criterion for Buckling Strength of Built-up Compression Members. Eng. J., 28(4), 159-168.
  • [20] AISC LRFD: 1994. Load and resistance factor design, American Institute of Steel Construction (AISC), Chicago.
  • [21] Temple, M. C., & El-Mahdy, G. M. (1993). Buckling of built-up compression members in the plane of the connectors. Can. J. Civ. Eng., 20, 895-909.
  • [22] Temple, M. C., & El-Mahdy, G. M. (1995). Local effective length factor in the equivalent slenderness ratio. Can. J. Civ. Eng., 22, 1164-1170.
  • [23] Lue, D. M., Yen, T., & Liu, J. L. (2006). Experimental Investigation on Built-up Columns. J. Constr. Steel Res., 62, 1325-1332.
  • [24] Liu, J. L., Lue, D. M., & Lin, Ch. H. (2009). Investigation on Slenderness Ratios of Built-up Compression Members. J. Constr. Steel Res., 65, 237-248.
  • [25] AISC-LRFD:2005. Load and resistance factor design. Specification for structural steel buildings. American Institute of Steel Construction: Chicago.
  • [26] AS-4100:1998. Steel structures. Standards Association of Australia, Homebush, Australia, 1998.
  • [27] CSA S16-01:2001. Limit states design of steel structures. Canadian Standards Association, Toronto.
  • [28] Abejide, O. S., & Masce, P. E. (2007). Evaluation of Effective Lengths of Braced Double Angle Diagonals. Res. J. Appl. Sci, 2(10), 1060-1065.
  • [29] CEN: 2003. Eurocode 3: Design of Steel Structures. Part 1-1: General Rules and Rules for Buildings. European Committee for Standardization.
  • [30] AISC: 1999. Load and resistance factor design. Specification for structural steel buildings. American Institute of Steel Construction, Chicago.
  • [31] BS5950: 2000. Structural Use of Steelwork in Buildings. British Standards Institution, London.
  • [32] Stone, T. A., & La Boube, R. A. (2005). Behavior of cold-formed steel built-up I-sections. Thin-Walled Struct., 43, 1805-1817.
  • [33] Ting, T. C. H., & Lau, H. H. (2011) Compression Test on Cold-formed Steel Built-up Back-to-back Channels Stub Columns. Adv. Mater. Res., 201-203: 2900-2903.
  • [34] Anbarasu, M., Kanagarasu, K., & Sukumar, S. (2015). Investigation on the behaviour and strength of coldformed steel web stiffened built-up battened columns. Mater. and Struct., 48, 4029-4038.
  • [35] Zhang, J.-H., & Young, B. (2015). Numerical investigation and design of cold-formed steel built-up open section columns with longitudinal stiffeners. Thin- Walled Struct., 89, 178-191.
  • [36] Tamai, H., Yamanishi, T., Takamatsu, T. & Matsuo, A. (2011). Experimental study on lateral buckling behavior of weld-free built-up member made of H-SA700A high-strength steel. J. Struct. Constr. Eng. 2, 407-415.
  • [37] Słowiński, K., & Wuwer, W. (2016). Blind-bolted shear connections for axially compressed RHS columns strengthened with open sections. J. Constr. Steel Res. 127, 15-27.
  • [38] Słowiński, K., & Wuwer, W. (2016). Technology of reinforcing of compressed steel bars with closed and open cross-sections. Fastener: rynek elementów złącznych, 1, 43-47.
  • [39] Deniziak, P., & Winkelmann, K. (2018). TS-based RSM-aided design of cold-formed steel stiffened Csectional columns susceptible to buckling, Shell Struct.: Theory and Applications, 4, 533-536.
  • [40] Deniziak, P., & Winkelmann, K. (2018). Influence of nonlinearities on the efficiency and accuracy of FEM calculations on the example of a steel build-up thinwalled column. MATEC Web of Conferences, 219, 02010 1-8.
  • [41] PN-EN 1993-1-1:2006 Eurocode 3: Design of steel structures - Part 1-1: General rules and rules for buildings. The Polish Committee for Standardization, Warsaw.
  • [42] Kowal, Z., & Siedlecka, M. (2017). Load bearing capacity of compressed closely spaced built-up members in space structures. JCEEA, 34, 64(3/I/17), 407-416.
  • [43] ABAQUS 6.14. PDF Documentation. Abaqus Analysis User’s Guide, Simulia, Dassault Systčmes, 2014.
  • [44] ABAQUS 6.14. PDF Documentation. Abaqus/CAE User’s Guide, Simulia, Dassault Systčmes, 2014.
  • [45] ABAQUS 6.14. PDF Documentation. Abaqus Theory Guide, Simulia, Dassault Systčmes 2014.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ed545d65-0e3e-4110-8215-b501a5366698
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.