PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of gas boriding on corrosion resistance of Inconel 600-alloy

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The aim of this study was to analyse the corrosion behaviour of gas-borided layers produced on Inconel 600-alloy. Two types of the borided layers were produced: fully borided and partially borided layer. The results obtained for gas-borided specimens were compared to untreated Inconel 600-alloy. Design/methodology/approach: In this paper, gas boriding in N2-H2-BCl3 atmosphere was applied to produce the boride layers on Inconel 600-alloy. This process was carried out at 910°C (1193 K) for 2 h. Microstructure observations were carried out using a light microscope. The hardness measurements were performed using a Vickers method under a load of 0.981 N. In order to evaluate the corrosion resistance, the immersion corrosion test in a boiling solution of H2O, H2SO4 and Fe2(SO4)3 was used. Findings: The gas-borided layers consisted of a mixture of nickel borides (Ni3B, Ni2B, Ni4B3, NiB) and chromium borides (CrB, Cr2B). The high thickness of compact boride layer (76-79 μm) as well as high hardness (up to 2061 HV) were obtained. Based on corrosion resistance tests it was found that in case of untreated sample the strong intergrannular attack was observed. Whereas the corrosion behavior ofgas-borided Inconel 600-alloy was more complicated and resulted from the surface condition. Research limitations/implications: The obtained results indicated that gas-boriding in N2-H2-BCl3 atmosphere could be a suitable corrosion protection if the whole surface would be covered with boride layer. Practical implications: The parameters of gas boriding in N2-H2-BCl3 atmosphere used in this study (temperature of 910°C for 2 h) allowed to produced layers of a higher thickness in comparison with other acceptable method of boriding e.g. powder-pack boriding. Originality/value: Based on the results it was found that gas-boriding in N2-H2-BCl3 atmosphere is a suitable method to protect Inconel 600-alloy from corrosion.
Rocznik
Strony
23--33
Opis fizyczny
Bibliogr. 19 poz.
Twórcy
autor
  • Institute of Materials Science and Engineering, Poznan University of Technology, Pl. M. Skłodowskiej-Curie 5, 60-965 Poznań, Poland
autor
  • Institute of Materials Science and Engineering, Poznan University of Technology, Pl. M. Skłodowskiej-Curie 5, 60-965 Poznań, Poland
autor
  • Institute of Materials Science and Engineering, Poznan University of Technology, Pl. M. Skłodowskiej-Curie 5, 60-965 Poznań, Poland
Bibliografia
  • [1] H. Li, J. Ma, X. Liu, S. Xia, W. Liu, B. Zhou, Morphology Evolution of Grain Boundary Carbides in Highly Twinned Inconel Alloy 600, Materials Science Forum 879 (2016) 1111-1116, doi: 10.4028/www.scientific.net/MSF.879.1111.
  • [2] T.H. Lee, Y.J. Lee, S.H. Joo, H.H. Nersisyan, K.T. Park, J.H. Lee, Intergranular M23C6 Carbide Precipitation Behavior and Its Effect on Mechanical Properties of Inconel 690 Tubes, Metallurgical and Materials Transactions A 46 (2015) 4020-4026, doi: 10.1007/s11661-015-3003-4.
  • [3] Y. Sun, Kinetics of layer growth during plasma nitriding of nickel based alloy Inconel 600, Journal of Alloys and Compounds 351 (2003) 241-247, https://doi.org/10.1016/S0925-8388(02)01034-4.
  • [4] K.M. Eliasen, T.L. Christiansen, M.A.J. Somers, Low temperature gaseous nitriding of Ni based superalloys, Surface Engineering 26/4 (2010) 248-255, http://dx.doi.org/10.1179/026708409X124903604260 43.
  • [5] H. Kovací, H. Ghahramanzadeh, C. Albayrak, A. Alsaran, A. Çelik, Effect of plasma nitriding parameters on the wear resistance of alloy Inconel 718, Metal Science and Heat Treatment 58/7- 8 (2016) 470-474, https://doi.org/10.1007/s11041- 016-0037-1.
  • [6] F. Mindivan, H. Mindivan, Comparisons of Wear Performance of Hardened Inconel 600 by Different Nitriding Processes, Procedia Engineering 68 (2013) 730-735, https://doi.org/10.1016/j.proeng. 2013.12.246.
  • [7] T. Borowski, A. Brojanowska, M. Kost, H. Garbacz, T. Wierzchoń, Modifying the properties of the Inconel 625 nickel alloy by glow discharge assisted nitriding, Vacuum 83/12 (2009) 1489-1493, https://doi.org/10.1016/j.vacuum.2009.06.056.
  • [8] V. Sista, O. Kahvecioglu, G. Kartal, Q.Z. Zeng, J.H. Kim, O.L. Eryilmaz, A. Erdemir, Evaluation of electrochemical boriding of Inconel 600, Surface & Coatings Technology 215 (2013) 452-459, https://doi.org/10.1016/j.surfcoat.2012.08.083.
  • [9] N. Makuch, M. Kulka, Microstructural characterization and some mechanical properties of gas-borided Inconel 600 alloy, Applied Surface Science 314 (2014) 1007-1018, https://doi.org/10.1016/j.apsusc.2014.06.109.
  • [10] N. Makuch, M. Kulka, A. Piasecki, The effects of chemical composition of Nimonic 80A alloy on the microstructure and properties of gas-borided layer, Surface & Coatings Technology 276 (2015) 440-455, https://doi.org/10.1016/j.surfcoat.2015.06.031.
  • [11] W. Muhammad, K. Hussain, A. Tauqir, A. Ul, A.Q. Khan, Evaluation of halide-activated pack boriding of INCONEL 722, Metallurgical and Materials Transactions A 30 (1999) 670-675.
  • [12] R.S. Petrova, N. Suwattananont, V. Samardzic, The Effect of Boronizing on Metallic Alloys for Automotive Applications, Journal of Materials Engineering and Performance 17/3 (2008) 340-345, https://doi.org/10.1007/s11665-008-9228-2.
  • [13] N. Makuch, M. Kulka, D. Mikołajczak, Corrosion Behavior of Hard Boride Layer Produced on Nimonic 80A-Alloy by Gas Boriding, Transactions of the Indian Institute of Metals (in press), doi: 10.1007/s12666-017-1113-y.
  • [14] M. Kulka, N. Makuch, M. Popławski, Two-stage gas boriding of Nisil in N2-H2-BCl3 atmosphere, Surface & Coatings Technology 244 (2014) 78-86, doi: 10.1016/j.surfcoat.2014.01.057.
  • [15] F. Hegewaldt, L. Singheiser, M. Tuerk, Gasborieren, Haerteri Technische Mitteilungen 39 (1984) 7-15.
  • [16] M. Kulka, N. Makuch, A. Piasecki, Nanomechanical characterization and fracture toughness of FeB and Fe2B iron borides produced by gas boriding of Armco iron, Surface & Coatings Technology 325 (2017) 515-532, https://doi.org/10.1016/j.surfcoat. 2017.07.020.
  • [17] S. Taktak, Some mechanical properties of borided AISI H13 and 304 steels, Materials & Design 28/6 (2007) 1836-1843, https://doi.org/10.1016/j.matdes. 2006.04.017.
  • [18] Y. Kayali, I. Günes, S. Ulu, Diffusion kinetics of borided AISI 52100 and AISI 440C steels, Vacuum 86 (2012) 1428-1434, doi: 10.1016/j.vacuum.2012.03.030.
  • [19] M.G. Fontana, R.W. Staehle (Eds.), Advances in corrosion science and technology, Pleneum Press, New York, 1975.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ed4d1062-9c5e-4f05-933e-86fac7e0ab61
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.