PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Phytotoxicity of Contaminated Sand Containing Crude Oil Sludge on Ludwigia octovalvis

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This present research work was conducted to determine the phytotoxic effects on tropical native plants, Ludwigia octovalvis, in order to assess its application for phytoremediation of crude oil sludge in contaminated sand. For this purpose of study, L. octavalvis plants were planted in containers containing different proportion of spiked real crude oil sludge in sand (10%, 50%, and 100% (v/v)). Degradation of crude oil sludge by L. octovalvis was measured in terms of total petroleum hydrocarbons (TPH) and was compared with TPH degradation inside control crates without plants. The findings indicated that the average TPH removal after a prolonged 42-day exposure period was high. The degrees of TPH degradation were 67.0, 42.4 and 46.2% in sand spiked with real crude oil sludge at 10, 50 and 100% respectively, whereas the degradation was only 34.7, 29.1 and 20.5% for the unplanted containers at the same respective proportions of crude oil sludge in sand. These findings give evidence that L. octovalvis has the capability to degrade hydrocarbons in crude oil sludge.
Rocznik
Strony
246--255
Opis fizyczny
Bibliogr. 36 poz., rys., tab.
Twórcy
  • Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
  • Department of Civil and Structural Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
  • Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
  • Department of Biochemical Engineering, Al-Khwarizmi College of Engineering, University of Baghdad, Baghdad, Iraq
  • Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
autor
  • Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
  • Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
autor
  • Department of Civil and Structural Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
Bibliografia
  • 1. Alanbary, S.R.N, Abdullah, S.R.S., Abu Hassan, H. & Othman, A.R. (2018). Screening for Resistant and Tolerable Plants (Ludwigia octovalvis and Phragmites karka) in Crude Oil Sludge for Phytoremediation of Hydrocarbons. Iranica Journal of Energy and Environment 9, 48–51.
  • 2. Al-Baldawi, I.A.W., Abdullah, S.R.S., Abu Hasan, H., Sujá, F., Anuar, N., & Idris, M. 2014. Optimized conditions for phytoremediation of diesel by Scirpus grossus in horizontal subsurface flow constructed wetlands (HSFCWs) using response surface methodology. Journal of Environmental Management, 140, 152–159.
  • 3. Al-Delaimy, A.O.A. 2013. Effect of Mineral Acids on Rooting Response of Aging Mung Bean (Phaseolus aureus Roxb.) Cuttings via Indole Acetic Acid Level. Journal of Biology Agriculture and Healthcare 3(11): 40–48.
  • 4. Agamuthu, P., Abioye, O.P. & Abdul Aziz, A. 2010. Phytoremediation of sand contaminated with used lubricating oil using Jatropha curcas. Journal of Hazardous Materials 179, 891–894.
  • 5. Almansoory, A.F., Abu Hasan, H., Abdullah, S.R.S., Idris, M., Anuar, N. & Al-Adiwish, W.M. 2019. Biosurfactant produced by the hydrocarbon-degrading bacteria: Characterization, activity and applications in removing TPH from contaminated sand. Environmental Technology & Innovation 14(2019), 1–11.
  • 6. Al-Mansoory, A.F., Idris, M., Abdullah, S.R.S., & Anuar N. 2017. Phytoremediation of contaminated sands containing gasoline using Ludwigia octovalvis (Jacq.) in greenhouse pots. Environmental Science and Pollution Research 24, 11998–12008.
  • 7. Al-Sbani, N.H., Abdullah, S.R.S., Idris, M., Abu Hasan, H., Jehawi, O.H. & Ismail. N. I. 2016. Subsurface flow system for PAHs removal in water using Lepironia articulate under greenhouse conditions. Ecological Engineering 87, 1–8.
  • 8. Becerra-Castro, C., Kidd, P.S., Rodríguez-Garrido, P., Monterroso, C., Santos-Ucha, P. & PrietoFernández, A. 2013. Phytoremediation of hexachlorocyclohexane (HCH)-contaminated sands using Cytisus striatus and bacterial inoculants in sands with distinct organic matter content. Environmental Pollution 178, 202–210.
  • 9. Cai, Q.Y., Mo, C.H, Wu, Q.T., Zeng, Q.Y., Katsoyiannis, A., & Férard, J.F. 2007. Bioremediation of polycyclic aromatic hydrocarbons (PAHs)-contaminated sewage sludge by different composting processes. Journal of Hazardous Materials 142, 535–542.
  • 10. Cao, Z., Liu, X., Zhang, X., Chen, L., Liu, S. & Hu Y. 2012. Short-term effects of diesel fuel on rhizosphere microbial community structure of native plants in Yangtze estuarine wetland. Environmental Science and Pollution Research, 19, 2179– 2185.
  • 11. Chan, H. 2011. Biodegradation of petroleum oil achieved by bacteria and nematodes in contaminated water. Separation and Purification Technology 80, 459–466.
  • 12. Chandra, R. & Yadav, S. 2010. Potential of Typha angustifolia for phytoremediation of heavy metals from aqueous solution of phenol and melanoidin. Ecological Engineering 36: 1277–1284.
  • 13. Guo, H., Yao, J., Cai, M., Qian, Y., Guo, Y., Richnow, H.H., Blake, R. E., Doni, S., Ceccanti, B. 2012. Effects of petroleum contamination on sand microbial numbers, metabolic activity and urease activity. Chemosphere 87, 1273–1280.
  • 14. Hanks, N. A., Caruso, J. A., & Zhang, P. 2015. Assessing Pistia stratiotes for phytoremediation of silver nanoparticles and Ag(I) contaminated waters. Journal of Environmental Management 164, 41–45.
  • 15. Hua, G., Li, J. & Zeng, G. 2013. Recent development in the treatment of oily sludge from petroleumindustry: A review. Journal of Hazardous Materials 261, 470–490.
  • 16. Jagtap, S. S., Woo, S.M., Kim, T. S., Dhiman, S.S., Kim, D. & Lee, J. 2014. Phytoremediation of dieselcontaminated sand and scarification of the resulting biomass. Fuel 116, 292–298.
  • 17. Khan, S., Afzal, M., Iqbal, S. & Khan, Q.M. 2013. Plant–bacteria partnerships for the remediation of hydrocarbon contaminated sands. Chemosphere, 90, 1317–1332.
  • 18. Kirk, J. L., Klironomos, J.N., Lee, H. & Trevors, J.T (2005). “The effects of perennial ryegrass and alfalfa on microbial abundance and diversity in petroleum contaminated sand. Environmental Pollution 133, 455–465.
  • 19. Kotti, I.P., Gikas, G.D. & Tsihrintzis, V. A. 2010. Effect of operational and design parameters on removal efficiency of pilot-scale FWS constructed wetlands and comparison with HSF systems. Ecological Engineering 36, 862–875.
  • 20. Liu, X., Wang, Z., Zhang, X., Wang, J., Xu, G., Cao, Z., Zhong, C. & Su, P. 2011. Degradation of diesel-originated pollutants in wetlands by Scirpus triqueter and microorganisms. Ecotoxicology and Environmental Safety 74, 1967–1972.
  • 21. Lu, S., Teng, Y., Wang, J. & Sun, Z. 2010. Enhancement of pyrene removed from contaminated sands by Bidens maximowicziana. Chemosphere 81, 645–650.
  • 22. McCauley, A., Jones, C. & Jacobsen, J. 2009. Plant nutrient functions and deficiency and toxicity symptoms. In Nutrient Management Module No. 9. Montana State University. http://landresources.montana.edu/NM/Modules/Module9.pdf [7 Nopember 2011].
  • 23. Meudec, A., Poupart, N., Dussauze, J. & Deslandes, E. 2007. Relationship between heavy fuel oil phytotoxicity and polycyclic aromatic hydrocarbon contamination in Salicornia fragilis. Science Total Environmental 381, 146–156.
  • 24. Moreira, I., Oliveira, O., Triguis, J., Santos, A., Queiroz, A., Martins, C., Silva, C. & Jesus, R. 2011. Phytoremediation using Rhizophora mangle L. in mangrove sediments contaminated by persistent total petroleum hydrocarbons (TPHs). Microchemical Journal 99, 376–382.
  • 25. Ogbo E.M., Tabuanu., A. & Ubebe R. 2010. Phytotoxicity assay of diesel fuel-spiked substrates remediated with Pleurotus tuberregium using Zea mays. International Journal of Applied Research in Natural Products 3, 12–16.
  • 26. Peng, S. Zhou, Q., Cai, Z. & Zhang, Z. 2009. Phytoremediation of petroleum contaminated sands by Mirabilis Jalapa L. in a greenhouse plot experiment. Journal of Hazardous Materials 168(2–3), 1490–1496.
  • 27. Phillips, L. A., Greer, C.W., Farrell, R.E., Germida, J.J. 2009. Field-scale assessment of weathered hydrocarbon degradation by mixed and single plant treatments. Applied Sand Ecology 42, 9–17.
  • 28. Robertson, S.J., McGill, W.B., Massicotte, H.B., & Rutherford, P.M. 2007. Petroleum hydrocarbon contamination in boreal forest sands: a mycorrhizal ecosystems perspective. Biological Reviews 82(2007), 213–240.
  • 29. Rossmann, M., Matos, A., D., Abreu, E.C., Silva, F.F. & Borges, A.C. 2012. Performance of constructed wetlands in the treatment of aerated coffee processing wastewater: Removal of nutrients and phenolic compounds. Ecological Engineering 49, 264–269.
  • 30. Sanusi, S.N.A., Helmi, M. I. E., Abdullah, S.R.S., Abu Hassan, H., Hamzah, F. M. & Idris, M. (2016). “Comparative Process optimization of pilot scale total petroleum hydrocarbon (TPH) degradation by Paspalum scrobiculatum L. Hack using Response Surface Methodology (RSM) and Artificial Neural Network (ANN). Ecological Engineering 97: 524–534.
  • 31. Sharonova, N.I. 2012. Tolerance of cultivated and wild plants of different taxonomy to sand contamination by kerosene. Science of the Total Environment 424, 121–129.
  • 32. Tang, J., Wang, M., Wang, F., Sun, Q. & Zhou, Q. 2011. Eco-toxicity of petroleum hydrocarbon contaminated sand. Journal of Environmental Sciences 23, 845–851.
  • 33. Tang, J., Lu, Z., Sun, Q. & Zhu, W. 2012. Aging effect of petroleum hydrocarbons in sand under different attenuation conditions. Agriculture Ecosystems and Environment 149, 109–117.
  • 34. White, P. M., Wolf, D. J., Thomas, G. J. & Reynolds C. M. (2006). Phytoremediation of alkylated polycyclic aromatic hydrocarbons in a crude oilcontaminated sand. Water, Air, and Sand Pollution, 169, 207–220.
  • 35. Xu, N., Wang, W., Han, P. & Lu, X. 2009. Effects of ultrasound on oily sludge deoiling. Journal of Hazardous Materials 171, 914–917.
  • 36. Yousuf, M. N., Akter, S., Haque, M., Mohammad, N. & Zaman, M.S. 2013. Compositional Nutrient Diagnosis (Cnd) Of Onion (Allium Cepa L.). Bangladesh Journal Agrilcultural Research 38, 271-287.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ed4a168b-f53a-4b9f-85e7-2593da8b07fc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.