Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The most crucial transmission components utilized in rotating machinery are gears and bearings. In a gearbox, the bearings support the force acting on the gears. Compound Faults in both the gears and bearings may cause heavy vibration and lead to early failure of components. Despite their importance, these compound faults are rarely studied since the vibration signals of the compound fault system are strongly dominated by noise. This work proposes an intelligent approach to fault identification of a compound gear-bearing system using a novel Bessel kernel-based Time-Frequency Distribution (TFD) called the Bessel transform. The Time-frequency images extracted using the Bessel transform are used as an input to the Convolutional Neural Network (CNN), which classifies the faults. The effectiveness of the proposed approach is validated with a case study, and a testing efficiency of 94% is achieved. Further, the proposed method is compared with the other TFDs and found to be effective.
Czasopismo
Rocznik
Tom
Strony
83--97
Opis fizyczny
Bibliogr. 38 poz., rys., tab., wykr., wzory
Twórcy
autor
- Department of Mechanical Engineering, National Engineering College, Kovilpatti, Tamilnadu, India
autor
- Department of Mechanical Engineering, National Engineering College, Kovilpatti, Tamilnadu, India
Bibliografia
- [1] Jia, Y., Li, G., Dong, X. & He, K. (2021). A novel denoising method for vibration signal of hob spindle based on EEMD and grey theory. Measurement: Journal of the International Measurement Confederation, 169, 108490. https://doi.org/10.1016/j.measurement.2020.108490
- [2] Babouri, M. K., Djebala, A., Ouelaa, N., Oudjani, B. & Younes, R. (2020). Rolling bearing faults severity classification using a combined approach based on multi-scales principal component analysis and fuzzy technique. The International Journal of Advanced Manufacturing Technology, 107, 4301-4316. https://doi.org/10.1007/s00170-020-05342-6
- [3] He, Q. (2013). Time-frequency manifold for non-linear feature extraction in machinery fault diagnosis. Mechanical Systems and Signal Processing, 35, 200-218. https://doi.org/10.1016/j.ymssp.2012.08.018
- [4] Wang, D., Tse, P. W. & Tsui, K. L. (2013). An enhanced Kurtogram method for fault diagnosis of rolling element bearings. Mechanical Systems and Signal Processing, 35, 176-199. https://doi.org/10.1016/j.ymssp.2012.10.003
- [5] Chandra, N. H. & Sekhar, A. S. (2016), Fault detection in rotor bearing systems using time frequency techniques. Mechanical Systems and Signal Processing, 72-73, 105-133. https://doi.org/10.1016/j.ymssp.2015.11.013
- [6] Ibrahim, G. R. & Albarbar, A. (2011). Comparison between Wigner-Ville distribution- and empirical mode decomposition vibration-based techniques for helical gearbox monitoring. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 225(8), 1833-1846. https://doi.org/10.1177/0954406211403571
- [7] Aharamuthu, K. & Ayyasamy, E. P. (2013). Application of discrete wavelet transform and Zhao-Atlas-Marks transforms in non stationary gear fault diagnosis. Journal of Mechanical Science and Technology, 27, 641-647. https://doi.org/10.1007/s12206-013-0114-y
- [8] Inturi, V., Sabareesh, G. R., Supradeepan, K. & Penumakala, P. K. (2019). Integrated condition monitoring scheme for bearing fault diagnosis of a wind turbine gearbox. JVC/Journal of Vibration and Control, 25(12), 1852-1865. https://doi.org/10.1177/1077546319841495
- [9] Chen, X., Cheng, G., Li, H. & Li, Y. (2017). Fault identification method for planetary gear based on DT-CWT threshold denoising and LE. Journal of Mechanical Science and Technology, 31, 1035-1047. https://doi.org/10.1007/s12206-017-0202-5
- [10] Bordoloi, D. J. & Tiwari, R. (2014). Support vector machine based optimization of multi-fault classification of gears with evolutionary algorithms from time-frequency vibration data. Measurement: Journal of the International Measurement Confederation, 55, 1-14. https://doi.org/10.1016/j.measurement.2014.04.024
- [11] N. Holighaus, M. Dorfler, G.A. Velasco, T. Grill, (2012). A Framework for Invertible, Real-Time Constant-Q Transforms, IEEE Trans. Audio Speech Lang. Process., 21(4), 775-778. https://doi.org/10.1109/tasl.2012.2234114
- [12] Rajagopalan, S., Restrepo, J. A., Aller, J. M., Habetler, T. G. & Harley, R. G. (2008). Nonstationary motor fault detection using recent quadratic time-frequency representations. IEEE Transactions on Industry Applications, 44, 735-744. https://doi.org/10.1109/TIA.2008.921431
- [13] Fernandes, F. C. A., Spaendonck, R. L. C. Van & Burrus, C. S. (2003). A New Framework for Complex Wavelet Transforms. IEEE Transactions on Signal Processing, 51(7), 1825-1837. https://doi.org/10.1109/TSP.2003.812841
- [14] F. Michael Thomas Rex, Andrews A., Krishnakumari, A. & Hariharasakthisudhan, P. (2020). A Hybrid Approach for Fault Diagnosis of Spur Gears Using HU Invariant Moments and Artificial Neural Networks. Metrology and Measurement Systems, 27(3), 451-464. https://doi.org/10.24425/mms.2020.134587
- [15] Zhenyu Guo, Louis-Gilles Durand, & Howard C. Lee. (1994). The time-frequency Distributions of Nonstationary Signals Based on a Bessel Kernel. IEEE Transactions on Signal Processing, 42, 1700-1707. https://doi.org/10.1109/78.298277
- [16] Y. Qu, Y. Zhang, M. He, D. He, & C. Jiao. (2019). Gear pitting fault diagnosis using disentangled features from unsupervised deep learning. Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability, 233(5), 719-730. https://doi.org/10.1177/1748006X18822447
- [17] S. Ma, F. Chu, & Q. Han. (2019). Deep residual learning with demodulated time-frequency features for fault diagnosis of planetary gearbox under nonstationary running conditions. Mechanical Systems and Signal Processing, 127(1), 190-201. https://doi.org/10.1016/j.ymssp.2019.02.055
- [18] L. H. Wang, X. P. Zhao, J. X. Wu, Y. Y. Xie, & Y. H. Zhang. (2017). Motor Fault Diagnosis Based on Short-time Fourier Transform and Convolutional Neural Network. Chinese Journal of Mechanical Engineering (English Edition), 30(6), 1357-1368. https://doi.org/10.1007/s10033-017-0190-5
- [19] I. I. E. Amarouayache, M. N. Saadi, N. Guersi, & N. Boutasseta. (2020). Bearing fault diagnostics using EEMD processing and convolutional neural network methods. International Journal of Advanced Manufacturing Technology, 107(9-10), 4077-4095. https://doi.org/10.1007/s00170-020-05315-9
- [20] Y. Zhang, T. Zhou, X. Huang, L. Cao, & Q. Zhou. (2020). Fault diagnosis of rotating machinery based on recurrent neural networks. Measurement: Journal of the International Measurement Confederation, 171, 108774. https://doi.org/10.1016/j.measurement.2020.108774
- [21] Y. Gu, L. Zeng, & G. Qiu. (2020). Bearing fault diagnosis with varying conditions using angular domain resampling technology, SDP and DCNN. Measurement: Journal of the International Measurement Confederation, 156, 107616. https://doi.org/10.1016/j.measurement.2020.107616
- [22] S. K. Gundewar & P. V Kane. (2022). Bearing fault diagnosis using time segmented Fourier synchrosqueezed transform images and convolution neural network. Measurement, 203, 111855. https://doi.org/10.1016/j.measurement.2022.111855
- [23] T. Jin, C. Yan, C. Chen, Z. Yang, H. Tian, & S. Wang. (2021). Light neural network with fewer parameters based on CNN for fault diagnosis of rotating machinery. Measurement, 181, 109639. https://doi.org/10.1016/j.measurement.2021.109639
- [24] K. Su, J. Liu, & H. Xiong. (2021). Knowledge-Based Systems Hierarchical diagnosis of bearing faults using branch convolutional neural network considering noise interference and variable working conditions. Knowledge-Based Systems, 230, 107386. https://doi.org/10.1016/j.knosys.2021.107386
- [25] W. Zhang, C. Li, G. Peng, Y. Chen, & Z. Zhang. (2018). A deep convolutional neural network with new training methods for bearing fault diagnosis under noisy environment and different working load. Mechanical Systems and Signal Processing, 100, 439-453. https://doi.org/10.1016/j.ymssp.2017.06.022
- [26] Shao, H., Lin, J., Zhang, L. & Wei, M. (2020). Compound fault diagnosis for a rolling bearing using adaptive DTCWPT with higher order spectra. Quality Engineering, 32, 342-353. https://doi.org/10.1080/08982112.2020.1749654
- [27] Dhamande, L. S. & Chaudhari, M. B. (2018). Compound gear-bearing fault feature extraction using statistical features based on time-frequency method. Measurement, 125, 63-77. https://doi.org/10.1016/j.measurement.2018.04.059
- [28] Ou, L. & Yu, D. (2016). Compound fault diagnosis of gearboxes based on GFT component extraction. Measurement Science and Technology, 27, 115007. https://doi.org/10.1088/0957-0233/27/11/115007
- [29] A. Dibaj, M. M. Ettefagh, R. Hassannejad, & M. B. Ehghaghi. (2021). A hybrid fine-tuned VMD and CNN scheme for untrained compound fault diagnosis of rotating machinery with unequal-severity faults. Expert Systems with Applications, 167, 114094. https://doi.org/10.1016/j.eswa.2020.114094
- [30] Juan Xu, Long Zhou, Weihua Zhao, Yuqi Fan, Xu Ding & Xiaohui Yuan. (2022). Zero-shot learning for compound fault diagnosis of bearings. Expert Systems with Applications, 190, 116197. https://doi.org/10.1016/j.eswa.2021.116197
- [31] R. Huang, J. Li, W. Li and L. Cui. (2020). Deep Ensemble Capsule Network for Intelligent Compound Fault Diagnosis Using Multisensory Data. IEEE Transactions on Instrumentation and Measurement, 69, 2304-2314. https://doi.org/10.1109/TIM.2019.2958010
- [32] R. Huang, Y. Liao, and S. Zhang. (2019). Deep Decoupling Convolutional Neural Network for Intelligent Compound Fault Diagnosis. IEEE Access, 7, 1848-1858. https://doi.org/10.1109/ACCESS.2018.2886343
- [33] R. Huang, Z. Wang, J. Li, J. Chen and W. Li. (2020). A Transferable Capsule Network for Decoupling Compound Fault of Machinery. 2020 IEEE International Instrumentation and Measurement Technology Conference, 1-6. https://doi.org/10.1109/I2MTC43012.2020.9129078
- [34] R. Huang, J. Li, Y. Liao, J. Chen, Z. Wang and W. Li. (2021). Deep Adversarial Capsule Network for Compound Fault Diagnosis of Machinery Toward Multidomain Generalization Task. IEEE Transactions on Instrumentation and Measurement, 70, 3506311. https://doi.org/10.1109/TIM.2020.3042300
- [35] L. Cui, Y. Sun, J. Zhang, and H. Wang. (2021). Adapted dictionary-free orthogonal matching pursuit and 0-1 programming to solve the isolation and diagnosis of bearing and gear compound faults. Measurement, 178, 109331. https://doi.org/10.1016/j.measurement.2021.109331
- [36] B. Zhong, M. Zhao, S. Zhong, L. Lin, and L. Wang. (2022). Mechanical compound fault diagnosis via suppressing intra-class dispersions: A deep progressive shrinkage perspective. Measurement, 199, 111433. https://doi.org/10.1016/j.measurement.2022.111433
- [37] P. V. Shinde and R. G. Desavale. (2022). Application of dimension analysis and soft competitive tool to predict compound faults present in rotor-bearing systems. Measurement, 193, 110984. https://doi.org/10.1016/j.measurement.2022.110984
- [38] Cohen, L. (1989). Time-frequency distributions - a review. 941-981. Proceedings of the IEEE, 77(7), 941-981. https://doi.org/10.1109/5.30749
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ed47fcf4-6e49-414b-b08a-4bbd8355987c