PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Microstructure, tribological performances, and wear mechanisms of laser-cladded TiC-reinforced NiMo coatings under grease-lubrication condition

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
NiMo-5%TiC, NiMo-15%TiC, and NiMo-25%TiC coatings were prepared on GCr15 steel by laser cladding (LC). The microstructure and the phases of the obtained coatings were analyzed using ultra-depth-of-field microscopy (UDFM) and X-ray diffraction (XRD), respectively. A ball-on-disk wear test was used to analyze the friction-wear performance of the substrate and the NiMo-TiC coatings under grease-lubrication condition. The results show that the grain shape of NiMo-TiC coatings is dendritic. The wear resistance of NiMo-TiC coatings is improved by the addition of TiC, and the depths of the worn tracks on the substrate and on the NiMo-5%TiC, NiMo-15%TiC, and NiMo-25%TiC coatings are 4.183 μm, 2.164 μm, 1.882 μm, and 1.246 μm, respectively, and the corresponding wear rates are 72.25 μm3/s/N, 32.00 μm3/s/N, 18.10 μm3/s/N, and 7.99 μm3/s/N, respectively; this shows that the NiMo-25%TiC coating has the highest wear resistance among the three kinds of coatings. The wear mechanism of NiMo-TiC coatings is abrasive wear, and the addition of TiC plays a role in resisting wear during the friction process.
Wydawca
Rocznik
Strony
395--409
Opis fizyczny
Bibliogr. 36 poz., rys.
Twórcy
autor
  • School of Mechanical Engineering, Changzhou University, Changzhou 213164, P.R. China
autor
  • School of Mechanical Engineering, Changzhou University, Changzhou 213164, P.R. China
Bibliografia
  • [1] Zhao Y, Cui C, Han X, Cui S, Li N, Qian Z. Preparation of in situ NbC-TiC@Graphene/Fe composite inoculant and its effect on microstructures and properties of GCr15. Mat Sci Eng A-Struct. 2020;772:138737; https://doi.org/10.1016/j.msea.2019.138737
  • [2] El Laithy M, Wang L, Harvey TJ, Vierneusel B, Correns M, Blass T. Further understanding of rolling contact fatigue in rolling element bearings -A review. Tribol Int. 2020;140:138737; https://doi.org/10.1016/j.triboint.2019.105849
  • [3] Cerrada M, Sánchez RV, Li C, Pacheco F, Cabrera D, de Oliveirae JV, et al. A review on data-driven fault severity assessment in rolling bearings. Mech Syst Signal Pr. 2018;99:169–96; https://doi.org/10.1016/j.ymssp.2017.06.012
  • [4] Zikin A, Badisch E, Hussaionva I, Tomastik C, Danninger H. Characterization of TiC-NiMo reinforced Ni-based hardfacing. Surf Coat Technol. 2013;236:36–44; https://doi.org/10.1016/j.surfcoat.2013.02.027
  • [5] Tan YF, Long HE, Wang XL, Hong X, Wang WG. Tribological properties and wear prediction model of TiC particles reinforced Ni-base alloy composite coatings. Trans Nonferr Metal Soc. 2014;24:2566–73; https://doi.org/10.1016/S1003-6326(14)63384-7
  • [6] Téllez-Villaseñor MA, León-Patiño CA, Aguilar-Reyes EA, Bedolla-Jacuinde A. Effect of load and sliding velocity on the wear behaviour of infiltrated TiC/Cu-Ni composites. Wear. 2021;484–485:203667; https://doi.org/10.1016/j.wear.2021.203667
  • [7] Wang R, Zhu GL, Yang C, Zhou WZ, Wang DH, Dong AP, et al. Novel selective laser melting processed in-situ TiC particle-reinforced Ni matrix composite with excellent processability and mechanical properties. Mat Sci Eng A-Struct. 2020;797:140145; https://doi.org/10.1016/j.msea.2020.140145
  • [8] Kübarsepp J, Klaasen H, Pirso J. Behaviour of TiC-base cermets in different wear conditions. Wear. 2001;249:229–34; https://doi.org/10.1016/S0043-1648(01)00569-5
  • [9] Hussainova I. Effect of microstructure on the erosive wear of titanium carbide-based cermets. Wear. 2003;255:121–8; https://doi.org/10.1016/S0043-1648(03)00198-4
  • [10] Zhu LD, Xue PS, Lan Q, Meng GR, Ren Y, Yang ZC, et al. Recent research and development status of laser cladding: A review. Opt Laser Technol. 2021;138:106915; https://doi.org/10.1016/j.optlastec.2021.106915
  • [11] Majumdar JD, Galun R, Mordike BL, Manna I. Effect of laser surface melting on corrosion and wear resistance of a commercial magnesium alloy. Mat Sci Eng A-Struct. 2003;361(1–2):119–29; https://doi.org/10.1016/S0921-5093(03)00519-7
  • [12] Nurminena J, Näkki J, Vuoristo P. Microstructure and properties of hard and wear resistant MMC coatings deposited by laser cladding. Int J Refract Met H. 2009;27(2):472–8; https://doi.org/10.1016/j.ijrmhm.2008.10.008
  • [13] Huang L, Deng XT, Wang Q, Jia Y, Li CR, Wang ZD. Solidification and sliding wear behavior of low-alloy abrasion-resistant steel reinforced with TiC particles. Wear. 2020;458–459:203444; https://doi.org/10.1016/j.wear.2020.203444
  • [14] Lin CL, Meehan PA. Morphological and elemental analysis of wear debris naturally formed in grease lubricated railway axle bearings. Wear. 2021;484–485:203994; https://doi.org/10.1016/j.wear.2021.203994
  • [15] Lu JZ, Cao J, Lu HF, Zhang LY, Luo KY. Wear properties and microstructural analyses of Fe-based coatings with various WC contents on H13 die steel by laser cladding. Surf Coat Technol. 2019;369:228–37; https://doi.org/10.1016/j.surfcoat.2019.04.063
  • [16] Zhou J, Kong D. Microstructure, Tribological performance, and wear mechanism of Cr- and Mo-reinforced FeSiB coatings by laser cladding. J Mater Eng Perform. 2020;29:7428–44; https://doi.org/10.1007/s11665-020-05187-w
  • [17] Zhang PL, Li MC, Yan H, Chen JS, Yu ZS, Ye X. Microstructure evolution of Ni-Mo-Fe-Si quaternary metal silicide alloy composite coatings by laser cladding on pure Ni. J Alloy Compd. 2019;785:984–1000; https://doi.org/10.1016/j.jallcom.2019.01.191
  • [18] Jiang PF, Zhang CH, Zhang S, Zhang JB, Chen J, Liu Y. Fabrication and wear behavior of TiC reinforced FeCoCrAlCu-based high entropy alloy coatings by laser surface alloying. Mater Chem Phys. 2020;255:123571; https://doi.org/10.1016/j.matchemphys.2020.123571
  • [19] Dadoo A, Boutorabia SMA. Correlation between pulsed laser parameters and MC carbide morphology in H13 tool steel/TiC composite coating. Opt Laser Technol. 2020;127:106120; https://doi.org/10.1016/j.optlastec.2020.106120
  • [20] Chen H, Lu YY, Sun YS, Wei YF, Wang XY, Liu DJ. Coarse TiC particles reinforced H13 steel matrix composites produced by laser cladding. Surf Coat Technol. 2020;395:125867; https://doi.org/10.1016/j.surfcoat.2020.125867
  • [21] Han TF, Xiao M, Zhang Y, Shen YF. Effects of graphite and graphene spatial structure on the TiC crystal structure and the properties of composite coatings. Surf Coat Technol. 2019;377:124909; https://doi.org/10.1016/j.surfcoat.2019.124909
  • [22] Tejero-Martin D, Bai MW, Mata J, Hussain T. Evolution of porosity in suspension thermal sprayed YSZ thermal barrier coatings through neutron scattering and image analysis techniques. J Eur Ceram Soc. 2021;41(12):6035–48; https://doi.org/10.1016/j.jeurceramsoc.2021.04.020
  • [23] Liu WH, Zeng W, Liu FS, Tang B, Liu QJ, Wang WD. The mechanical and electronic properties of o-Fe2C, h-Fe3C, t-Fe5C2, m-Fe5C2 and h-Fe7C3 compounds: First-principles calculations. Phys B. 2021;606:412825; https://doi.org/10.1016/j.physb.2021.412825
  • [24] Braic M, Balaceanu M, Parau AC, Dine M, Vladescu A. Investigation of multilayered TiSiC/NiC protective coatings. Vacuum. 2015;120(A):60–6; https://doi.org/10.1016/j.vacuum.2015.06.019
  • [25] Zhou JL, Kong DJ. Immersion corrosion and electrochemical performances of laser cladded FeSiB, FeSiBCr and FeSiBCrMo coatings in 3.5 wt% NaCl solution. Surf Coat Technol. 2020;383:125229; https://doi.org/10.1016/j.surfcoat.2019.125229
  • [26] Liu H, Liu J, Chen PJ, Yang HF. Microstructure and high temperature wear behaviour of in-situ TiC reinforced AlCoCrFeNi-based high-entropy alloy composite coatings fabricated by laser cladding. Opt Laser Technol. 2019;118:140–50; https://doi.org/10.1016/j.optlastec.2019.05.006
  • [27] Zhu HM, Ouyang MN, Hu JP, Zhang JW, Qiu CJ. Design and development of TiC-reinforced 410 martensitic stainless steel coatings fabricated by laser cladding. Ceram Int. 2021;47:12505–13; https://doi.org/10.1016/j.ceramint.2021.01.108
  • [28] Cui G, Han B, Zhao JB, Li MY. Comparative study on tribological properties of the sulfurizing layers on Fe, Ni and Co based laser cladding coatings. Tribol Int. 2019;134:36–49; https://doi.org/10.1016/j.triboint.2019.01.019
  • [29] Muhaffel F, Kaba M, Cempura G, Derin B, Kruk A, Atar E, et al. Influence of alumina and zirconia incorporations on the structure and wear resistance of titania-based MAO coatings. Surf Coat Technol. 2019;377:124900; https://doi.org/10.1016/j.surfcoat.2019.124900
  • [30] Zhang Q, Wu ZT, Xu YX, Wang QM, Chen L, Kim KH. Improving the mechanical and anti-wear properties of AlTiN coatings by the hybrid arc and sputtering deposition. Surf Coat Technol. 2019;378:125022; https://doi.org/10.1016/j.surfcoat.2019.125022
  • [31] Larsson E, Westbroek R, Leckner J, Jacobson S, Rudolphi ÅK. Grease-lubricated tribological contacts-Influence of graphite, graphene oxide and reduced graphene oxide as lubricating additives in lithium complex (LiX)- and polypropylene (PP)-thickened greases. Wear. 2021;486–487:204107; https://doi.org/10.1016/j.wear.2021.204107
  • [32] León-Patiño CA, Braulio-Sánchez M, Aguilar-Reyes EA, Bedolla-Becerril E, Bedolla-Jacuinde A. Dry sliding wear behavior of infiltrated particulate reinforced Ni/TiC composites. Wear. 2019;426–427:989–95; https://doi.org/10.1016/j.wear.2019.01.074
  • [33] Zhou JL, Kong DJ. Effects of Al and Ti additions on corrosive-wear and electrochemical behaviors of laser cladded FeSiB coatings. Opt Laser Technol. 2019;124:105958; https://doi.org/10.1016/j.optlastec.2019.105958
  • [34] Liu JS, Shi Y. Microstructure and wear behavior of laser-cladded Ni-based coatings decorated by graphite particles. Surf Coat Technol. 2021;412:127044; https://doi.org/10.1016/j.surfcoat.2021.127044
  • [35] Shi JZ, Ge Y, Kong DJ. Microstructure, dry sliding friction performances and wear mechanism of laser cladded WC-10Co4Cr coating with different Al2O3 mass fractions. Surf Coat Technol. 2021;406:126749; https://doi.org/10.1016/j.surfcoat.2020.126749
  • [36] Cai YC, Zhu LS, Cui Y, Shan MD, Li HJ, Xin Y, et al. Fracture and wear mechanisms of FeMnCrNiCo + x(TiC) composite high-entropy alloy cladding layers. Appl Surf Sci. 2021;543:148794; https://doi.org/10.1016/j.apsusc.2020.148794
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ed45747f-9c83-4c61-8d4a-9ac8d001ff7a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.