PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Inclusions in anhydrite crystals from blue halite veins in the Kłodawa Salt Dome (Zechstein, Poland)

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The occurrence of both the blue and violet halites is one of the most interesting phenomena in nature. Despite numerous laboratory and field works, their origin in natural evaporitic environments has not been satisfactorily explained. In the Kłodawa Salt Dome (Zechstein, Central Po land), blue or vio let halites occur relatively frequently. Their accumulations differ in size and intensity of colours. In this paper, petrological features of anhydrite crystals derived from one of the largest outcrops of the blue halite at the Kłodawa Salt Mine are presented. Anhydrite is one of solid inclusions encountered in blue-coloured halite crystals. Special attention was paid to fluid inclusions present in this anhydrite. The microthermometric measurements showed two directions of homogenisation, i.e., towards the liquid phase (LG→L, LL→L) ortowards the gas phase (LG→G). In the former case, the temperatures ranged from 174 to 513°C, whereas in the latter one, the values from 224 to 385°C were measured. The composition of inclusions is relatively variable. We can observe transparent and opaque daughter minerals as well as CO2 in the liquid phase accompanied by a variable amount of methane or hydrogen sulphide. These features of inclusions indicate that anhydrite crystals and, thus, blue halite were formed under the influence of hydrothermal conditions. Observations in the mine workings combined with petrological studies enable to conclude that blue colouration of halite crystals is controlled by three factors: a high temperature, reducing conditions and defects in halite lattice related to tectonic stress.
Rocznik
Strony
572--585
Opis fizyczny
Bibliogr. 80 poz., rys., wykr.
Twórcy
  • AGH University of Science and Technology, Faculty of Geology, Geophysics and Environmental Protection, al. A. Mickiewicza 30, 30-059 Kraków
Bibliografia
  • 1. Baikpour, S., Zulauf, G., Sebti, A., Kheirolahi, H., Dietl, C., 2010. Analogue and geophysical modelling of the Garmsar Salt Nappe, Iran: constraints on the evo I ution of the Alborz Mountains. Geophysical Journal International, 182: 599-612.
  • 2. Baker, T., Lang, J.R., 2001. Fluid inclusion characteristic of intrusion-related gold mineralization, Tombstone-Tungsten magmatic belt, Yukon Territory, Canada. Mineralium Deposita, 36: 563-582.
  • 3. Bakker, R.J., 2003. Package FLUIDS 1. Computer programs for analysis of fluid inclusion data and for modelling bulk fluid properties. Chemical Geology, 194: 3-23.
  • 4. Bakker, R.J., 2009. Package FLUIDS. Part 3: correlations between equations of state, thermodynamics and fluid inclusions. Geofluids, 9: 63-74.
  • 5. Bakker, R.J., 2012. Package FLUIDS. Part 4: thermodynamic modelling and purely empirical equations for H2O-NaCl-KCl soluttions. Mineralogy and Petrology, 105: 1-2.
  • 6. Bakker, R.J., Diamond, L.W., 2000. Determination of the composition and molar volume of H2O-CO2 fluid inclusions by microthermometry. Geochimica et Cosmochimica Acta, 64: 1753-1764.
  • 7. Bickham, M., 2012. Chemical analysis of blue halite. South-Central Section - 46th Annual Meeting (8-9 March 2012). GSA, Abstracts with Programs, 44: 8.
  • 8. Bobrov, V.P., Korenievski, S.M., Rabitchenko, O.P., 1968. Lithology and stratigraphy of Kramatorskya formation of Donbass and mineralogical-petrographical characteristics of potash horizons (in Russian). Proceedings of the Russian Geological Research Institute (VSEGEI), 161: 80-116.
  • 9. Bodnar, R.J., 2003. Interpretation of data from aqueous-electrolyte fluid inclusions. Mineralogical Association of Canada. Short Course Series, 32: 81-100.
  • 10. Borchert, H., 1959. Ozeane Salzlagerstätten. Gebrüder Borntraeger, Berlin.
  • 11. Borchert, H., Muir, R.O., 1964. Salt Deposits. The Origin, Metamorphism and Deformation of Evaporites. D. Van Nostrand Company, Ltd, London.
  • 12. Braitsch, O., 1971. Salt Deposits. Their Origin and Composition. Springer, New York.
  • 13. Burliga, S., 1994. Tension gashes in the Platy Dolomite (Zechstein) of SW part of the Kłodawa Diapir (Central Poland) - kinematic implication) (in Polish with English summary). Przegląd Geologiczny, 42: 99-102.
  • 14. Burliga, S., 2014. Heterogeneity of folding in Zechstein (Upper Permian) salt deposits in the Kłodawa Salt Structure, central Poland. Geological Quarterly, 58 (3): 565-576.
  • 15. Burliga, S., Kolonko, P., Misiek, G., Czapowski, G., 1995. Kłodawa salt mine. In: Upper Rotliegend - Zechstein: Terrestrial - Marine Sedimentary Succession in Polish Permian Basin (ed. J. Małecka): 45-54. XIII International Congress on Carboniferous-Permian, August 28-September 2, 1995, Guide to Excursion A3, Kraków, Poland.
  • 16. Charysz, W., 1973. Zechstein stage of Younger Salts (Z3) in Kujawy region (in Polish with English summary). Prace Geologiczne, 75: 1-68.
  • 17. Dadlez, R., 2003. Mesozoic thickness pattern in the Mid-Polish Trough. Geological Quarterly, 47 (3): 223-240.
  • 18. Dadlez, R., Narkiewicz, M., Stephenson, R.A., Visser, M.T.M., van Wees, J.D., 1995. Tectonic evolution of the Mid-Polish Trough: modelling implications and significance for central European geology. Tectonophysics, 252: 179-195.
  • 19. Davison, I., 2009. Faulting and fluid flow through salt. Journal of the Geological Society, 166: 205-216.
  • 20. Diamond, L.W., 1990. Fluid inclusion evidence for P-V-T-X evolution of hydrothermal so l utions in Late-Alpine gold-Quartz veins at Brusson, Val d'Ayas, NW Italian Alps. American Journal of Science, 290: 912-958.
  • 21. Diamond, L.W., 2001. Review ofthe systematics of CO2-H2O fluid inclusions. Lithos, 55: 69-99.
  • 22. Diamond, L.W., 2003. Introduction to gas-bearing, aqueous fluid inclusions. Mineralogical Association of Canada, Short Course Series, 32: 101-158.
  • 23. Fedele, L., Raia, F., Sasaki, M., Sawaki, T., Tarzia, M., Sasada, M., 2005. Fluid inclusion study constraining the hydrothermal evolution of caldera-forming volcanic systems in the Sengan Area, Northern Honshu, Japan. Mineralogy and Petrology, 84: 189-213.
  • 24. Garlicki, A., Szybist, A., 1986. Saline deposits of Polish Zechstein with potash salts (in Polish with English summary). Gospodarka Surowcami Minerlnymi, 2: 389-404.
  • 25. Goldstein, R.H., Reynolds, T.J., eds., 1994. Systematics of fluid inclusions in diagenetic minerals. SEPM Short Course, 31.
  • 26. Graupner, T., Bray, C.J., Spooner, E.T.C., Herzig, P.M., 2001. Analysis of fluid inclusions in seafloor hydrothermal precipitates: testing and application of an integrated GC/IC technique. Chemical Geology, 177: 443-470.
  • 27. Heflik, W., Natkaniec-Nowak, L., Toboła, T., 2008. Badania mikroskopowe soli niebieskich (in Polish) In: Sole niebieskie w wysadzie kłodawskim (eds. T. Toboła and L. Natkaniec-Nowak): 56-69. Uczelniane Wyd. Nauk.-Dydaktyczne AGH.
  • 28. Ivanov, A.A., Voronova, M.L., 1968. Geology of the Verkhnepetchora sedimentary basin and its potash bearing features (in Russian). Proceedings of the Russian Geological Research Institute (VSEGEI), 161: 3-79.
  • 29. Ivanov, A.A., Voronova, M.L., 1972. Salt-bearing Formations (in Russian). Russian Geological Research Institute (VSEGEI). Edition NEDRA, Moscow.
  • 30. Janiów, S., Misiek, G., Toboła, T., Natkaniec-Nowak, L., 2008. Występowanie soli niebieskich w kopalni Kłodawa (in Polish) In: Sole niebieskie w wysadzie kłodawskim (eds. T. Toboła and L. Natkaniec-Nowak): 24-53. Uczelniane Wyd. Nauk.-Dydaktyczne AGH.
  • 31. Kirill, I., Graham, C.M., 1999. An experimental study of phase equilibria in the system H2O-CO2-NaCl at 800°C and 9 kbar. Contributions to Mineralogy and Petrology, 136: 247-257.
  • 32. Knight, C.L., Bodnar, R.J., 1989. Synthetic fluid inclusions: IX. Critical PVTX properties of NaCl-H20 solutions. Geochimica et Cosmochimica Acta, 53: 3-8.
  • 33. Koriń, S.S., 1994. Budowa geologiczna mioceńskich formacji solonośnych ukraińskiego Przedkarpacia (in Polish). Przegląd Geologiczny, 42: 744-747.
  • 34. Koyi, H., Jenyon, M.K., Petersen, K., 1993. The effects of basement faulting on diapirism. Journal of Petroleum Geology, 16: 285-312.
  • 35. Kreutz, F., 1892. O przyczynie niebieskiego zabarwienia soli kuchennej: 194-205 Akademia Umiejętności, Kraków.
  • 36. Krzywiec, P., 2004. Triassic evolution of the Kłodawa salt structure: basement-controlled salt tectonics within the Mid-Polish Trough (Central Poland). Geological Quarterly, 48 (2): 123-134.
  • 37. Krzywiec, P., 2006. Structural inversion of the Pomeranian and Kuiavian segments of the Mid-Polish Trough lateral variations in timing and structural style. Geological Quarterly, 50 (1): 151-168.
  • 38. Kühn, R., 1968. Geochemistry of German potash deposits. GSA Special Papers, 88: 427-504.
  • 39. Natkaniec-Nowak, L., Toboła, T., 2003. Blue salt from Kłodawa (Kujawy, Poland) (in Polish with English summary). Przegląd Geologiczny. 51: 435-438.
  • 40. Polozov, A.G., Sergey, S., Sukhov, S.S., Gornova, M.A., Grishina, S.N., 2008. Salts from Udachnaya-East kimberlite pipe (Yakutia, Russia): occurrences and mineral composition. 9th International Kimberlite Conference Extended Abstract No. 9IKC-A-00247: 1-3.
  • 41. Pustyl'nikov, A.M., 1975. Orl gin of blue color in halite in Cambrian salt deposits of the Siberian Platform (in Russian). Litologiya i Poleznye Iskopaemye, 10: 388-389.
  • 42. Rahimpour-Bonab, H., Alijani, N., 2003. Petrography, diagenesis and depositional model for potash deposits of north Central Iran, and use of bromine geochemistry as a prospecting tool. Carbonates and Evaporites, 18: 19-28
  • 43. Roedder, E., 1984a. Fluid inclusions. Reviews in Mineralogy, 12: 1-644.
  • 44. Roedder, E., 1984b. The fluid in salt. American Mineralogist, 69: 413-439.
  • 45. Roulston, B.V., Waugh, D.C.E., 1983. Stratigraphic comparison of the Mississipian potash deposits in New Brunswick, Canada. Sixth International Symposium on Salt, 1: 115-129.
  • 46. Schléder, Z., Urai, J.L., 2005. Microstructural evolution of deformation-modified primary halite from the Middle Triassic Röt Formation at Hengelo, The Netherlands. International Journal of Earth Sciences, 94: 941-955.
  • 47. Schléder, Z., Urai, J.L., 2007. Deformation and recrystallization mechanisms in mylonitic shear zones in naturally deformed extrusive Eocenee-Oligocene rocksalt from Eyvanekey plateau and Garmsar hills (central Iran). Journal of Structural Geology, 29: 241-255.
  • 48. Schléder, Z., Burliga, S., Urai, J.L., 2007. Dynamic and static recrystallization-related microstructures in halite samples from the Klodawa salt wall (central Poland) as revealed by gamma-irradiation. Neues Jahrbuch für Mineralogie Abhandlungen, 184: 17-28.
  • 49. Schléder, Z., Urai, J.L., Nollet, S., Hilgers, C., 2008. Solution-precipitation creep and fluid flow in halite: a case study of Zechstein (Z1) rocksalt from Neuhof salt mine (Germany). International Journal of Earth Sciences, 97: 1045-1056.
  • 50. Schmidt, C., Bodnar, J., 2000. Synthetic fluid inclusions: XVI. PVTX properties in the system H2O-NaCl-CO2 at elevated temperatures, pressures, and salinities. Geochimica et Cosmochimica Acta, 64: 3853-3869.
  • 51. Schmidt, C., Rosso, K.M., Bodnar, J.R., 1995. Synthetic fluid inclusions: XIII. Experimental determination of pVt properties in the system H2O + 40 wt% NaCl + 5 mol% CO2 at elevated temperature and pressure. Geochemica et Cosmochimica Acta, 59: 3953-3959.
  • 52. Smetannikov, A.F., 2011. Hydrogen generation during the radiolysis of crystallization water in carnallite and possible consequences of this process. Geochemistry International, 49: 916-924.
  • 53. Sonnenfeld, P., 1995. The color of rock salt - a review. Sedimentary Geology, 94: 267-276.
  • 54. Stadnicka, K., Zelek, S., 2008. Badania strukturalne soli niebieskich oraz faz stałych z inkluzji w halicie (in Polish). In: Sole niebieskie w wysadzie kłodawskim (eds. T. Toboła and L. Natkaniec-Nowak): 100-116. Uczelniane Wyd. Nauk.-Dydaktyczne AGH.
  • 55. Stańczyk, I., 1970. Polyhalite in the salt mines of the Kujawy region (in Polish with English summary). Acta Geologica Polonica, 20: 805-821.
  • 56. Stańczyk-Stasik, I., 1976. Les dépots cpigénétiques dans les mines de sel de la région de Kujawy (in Polish with French summary). Prace Geologiczne, 90: 1-64.
  • 57. Sterner, S.M., Bodnar, R.J., 1991. Synthetic fluid inclusions. X: Experimental determination of P-V-T-X properties in the system CO2-H2O system to 6 KB and 700 C. American Journal of Science, 291: 1-54.
  • 58. Suwanich, P., 1983. Potash and rock salt in Thailand. Conference on Geology and Mineral Resources of Thailand, Bangkok, 19-28 November: 241-252.
  • 59. Tabakh, M.E., Utha-Aroon, Ch., Schreiber, B.Ch., 1999. Sedimentology of the Cretaceous Maha Sarakham evaporites in the Khorat Plateau of northeastern Thailand. Sedimentary Geology, 123: 31-62.
  • 60. Tarka, R., 1992. Tectonics of some salt deposits in Poland based on mesostructural analysis) (in Polish with English summary). Prace Państwowego Instytutu Geologicznego, 137: 1-47.
  • 61. Toboła, T., Natkaniec-Nowak, L., 2007. Solid phase inclusions in blue halite from Klodawa Salt Mine in the light of SEM-EDS analysis. XII International Salt Symposium „Quo Vadis Sal”. October 10-11, 2007, Kłodawa.
  • 62. Toboła, T., Natkaniec-Nowak, L., 2008. Badania mikroskopem elektronowym (SEM-EDS) inkluzji stałych (in Polish). In: Sole niebieskie w wysadzie kłodawskim (eds. T. Toboła and L. Natkaniec-Nowak): 70-80. Uczelniane Wyd. Nauk.-Dydaktyczne AGH.
  • 63. Toboła, T., Wesełucha-Birczyńska, A., 2008. Inkluzje fluidalne w halicie niebieskim (in Polish). In: Sole niebieskie w wysadzie kłodawskim (eds. T. Toboła and L. Natkaniec-Nowak): 81-99. Uczelniane Wyd. Nauk.-Dydaktyczne AGH.
  • 64. Toboła, T., Natkaniec-Nowak, L., Szybist A., Misiek, G., Janiów, S., 2007. Blue salts in Kłodawa Salt Mine (in Polish with English summary). Gospodarka Surowcami Mineralnymi, 23:117-132.
  • 65. Van den Kerkhof, A.M., Thiéry, R., 2001. Carbonic inclusions. Lithos, 55: 49-68.
  • 66. Vanko, D.A., Bach, W., 2005. Heating and freezing experiments on aqueous fluid inclusions in anhydrite: recognition and effects of stretching and the low-temperature formation of gypsum. Chemical Geology, 223: 35-45.
  • 67. Vinokurov, V.M., 1958. Blue rock salt from the Solikamsk district (in Russian). Zapisy Vsesoyuznogo Mineralogicheskogo Obshchestva (Proceedings of the All-Union Mineralogical Society), 87: 504-507.
  • 68. Wachowiak, J., Pieczka, A., 2012. Congolite and trembatite from the Kłodawa Salt Mine, central Poland: record of the thermal history of the parental salt dome. The Canadian Mineralogist, 50: 1387-1399.
  • 69. Wachowiak, J., Toboła, T., 2014. Phase transitions in the borate minerals from the Kłodawa Salt Dome (Central Poland) as indicators of temperature processes in salt diapirs. Geological Quarterly, 58 (3): 543-554.
  • 70. Wagner, M., Burliga, St., 2014. Coalified bitumens from the Kłodawa Salt Structure (central Poland) as evidence of migration of hydrothermal fluids in Zechstein (Upper Permian) deposits. Geological Quarterly, 58 (3): 555-564.
  • 71. Wagner, R., Leszczyński, K., Pokorski, J., Gumulak, K., 2002. Palaeotectonic cross-sections through the Mid-Polish Trough. Geological Quarterly, 46 (3): 293-306.
  • 72. Waugh D.C.E., Urquhart, B.R., 1983. The geology of Denison-Potacan’s New Brunswick potash deposit. Sixth International Symposium on Salt, 1: 85-98.
  • 73. Werner, Z., Poborski, J., Orska, J., Bąkowski, J., 1960. A geological and mining outline of the Kłodawa salt deposit (in Polish with English summary). Prace Instytutu Geologicznego, 30: 467-495.
  • 74. Wesełucha-Birczyńska, A., Toboła, T., Natkaniec-Nowak, L., 2008. Raman microscopy of inclusions in blue halites. Vibrational Spectroscopy, 48: 302-307.
  • 75. Wilkinson, J.J., 2001. Fluid inclusions in hydrothermal ore deposits. Lithos, 55: 229-272.
  • 76. Xu, G., 2000. Fluid inclusions with NaCl-CaCl2-H2O composition from the Cloncurry hydrothermal system, NW Queensland, Australia. Lithos, 53: 21-35.
  • 77. Xu, G., Pollard P.J., 1999. Origin of CO2-rich fuid inclusions in synorogenic veins from the Eastern Mountisa Fold Belt, NW Queensland, and their implications for mineralization. Mineralium Deposita, 34: 395-404.
  • 78. Yao, Y., Morteani, G., Trumbull, R.B., 1999. Fluid inclusion microthermometry and the P-T evolution of gold-bearing hydrothermal fuids in the Niuxinshan gold deposit, eastern Hebei province, NE China. Mineralium Deposita, 34: 348-365.
  • 79. Zelek, S., Stadnicka, K., Szklarzewicz, J., Natkaniec-Nowak, L., Toboła, T., 2007. Halite from Kłodawa: an attempt of correlation between the degree of crystal structure deformation and the spectroscopic properties in UV-VIS range. XII International Salt Symposium „Quo Vadis Sal”. October 10-11, 2007, Kłodawa: 61-62.
  • 80. Zelek, S., Stadnicka, K., Toboła, T., Natkaniec-Nowak, L., 2014. Lattice deformation of blue halite from Zechstein evaporite basin: Kłodawa Salt Mine, Central Poland. Mineralogy and Petrology, 108: 619-631.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ed44ba29-1fcd-447f-aac1-62000e94dde1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.