PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Investigation and optimization of an untypical vertical axis rotor of a small wind turbine

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, an atypical resistance rotor of a vertical axis small wind energy turbine is to be aerodynamically investigated and later on optimized in a flow simulation. In this report the results obtained from the flow simulations of the single and two rotor setup, as well as the results from the flow simulations of a single blade, are presented. The geometry of the rotor and blades is the base geometry for further optimization. All simulations are performed with one specific tip speed ratio. The base geometry for slat and baffle can be calculated based on experience gained in previous studies. It was found in previous experiments that a rotor with 42% coverage (area that occupies the wings of the total circumference) is always started. Those experiments have also shown that a rotor with 36.5% coverage has a higher power coefficient at low wind speeds, at higher wind speeds, the rotor with 42% coverage has a better power coefficient. Based on those first investigations the optimization of the blade and rotor geometry will be carried out later in this project. Another focal point will be the investigation of the "stacking" of two wind turbines on top of each other in order to obtain a stable torque over the entire circulation and the determination of the optimal distance between two rotors.
Rocznik
Strony
245--258
Opis fizyczny
Bibliogr.15 poz., rys., tab.
Twórcy
  • City University of Applied Sciences, Faculty of Nature and Engineering, Institute of Aerospace Technology, Flughafenallee 10, 28199 Bremen, Germany
  • City University of Applied Sciences, Faculty of Nature and Engineering, Institute of Aerospace Technology
Bibliografia
  • 1. Czisch G., Durstewitz M., Hoppe-Kilpper M., Kleinkauf, W. (1999). Windenergie gestern, heute und morgen. In: Husum Wind '99. Kongreßband: Messe und Fachkongreß für Windenergie, Husum, Germany, 22-26 September, pp. 56-69.
  • 2. Henze A., Schröder W. Fahrzeug- und Windradaerodynamik – Windturbines, AIA RWTH Aachen, viewed 11 April 2019, http://www.aia.rwthaachen.de/vlueb/vl/fahrzeug_und_windradaerodynamik/material/windkraftanlagen_e nglish.pdf
  • 3. Schubel P.J., Crossley R.J. (2012). Wind Turbine Blade Design. Energies, Vol. 5, No. 9, pp. 3425-3449.
  • 4. Hau E. (2016). Windkraftanlagen: Grundlagen,Technik, Wirtschaftlichkeit. Springer, Heidelberg.
  • 5. Von Canstein R. (1991). German Patent No. DE 41 20 908 C2. Retrieved from https://register.dpma.de/DPMAregister/pat/PatSchrifteneinsicht?docId=DE000004120908C2&page=1&dpi=300&lang=de&full=true
  • 6. Kumbernuss J., Chen J., Yang H.X., Lu L. (2012). Investigation into the relationship of the overlap ratio and shift angle of double stage three bladed vertical axis wind turbine(VAWT). Journal of Wind Engineering and Industrial Aerodynamics, Vol. 107-108, pp. 57-75.
  • 7. Dabiri J.O. (2011). Potential order-of-magnitude enhancement of wind farm power density via counterrotating vertical-axis wind turbine arrays. Journal of Renewable and Sustainable Energy, Vol. 3, No. 4, pp. 043104
  • 8. Ragheb M. (2014). Optimal Rotor Tip Speed Ratio. University of Illinois, http://mragheb.com/NPRE%20475%20Wind%20Power%20Systems/Optimal%20Rotor%20Tip%20Speed%20Ratio.pdf
  • 9. Furtmayr F. (2013). Windkraftanlagen mit vertikaler Achse (VAWT): Der C-Rotor im Windkanalversuch und Strömungssimulation in Star-CCM+. B. Eng. Thesis. Hochschule für angewandte Wissenschaften Ingolstadt.
  • 10. Hu Y., Wang T., Jin H., Cao X., Zhang C. (2017). Experimental study on aerodynamic characteristics of vertical-axis wind turbine. International Journal of Smart Grid and Clean Energy, Vol. 6, No. 2, pp. 104113.
  • 11. Böcker J., Lange H. (2015). Windenergie - Potenziale auf Dächern. fk-wind, Institut für Windenergie, Hochschule Bremerhaven and STÄWOG Bremerhaven mbH.
  • 12. Bagal N.L., Singh B., Pardyjak E.R., Brwon M.J. (2004). Implementation of Rooftop Recirculation Parameterization into the QUIC Fast Response Urban Wind Model. In: Fifth Conference on Urban Environment, University of Utah, Salt Lake City, UT, 22-26 August, paper no. J6.10
  • 13. ANSYS Inc. Fluent User’s and Theory Guide.
  • 14. BWE Bundesverband WindEnergie, Widerstands- und Auftriebsläufer, BWE Bundesverband WindEnergie, viewed 10 April 2019, https://www.windenergie.de/themen/anlagentechnik/funktionsweise/widers tandlaeufer-auftriebslaeufer/
  • 15. Rill S. Aerodynamik des Flugzeugs, Hochschule Bremen, viewed 10 April 2019, http://homepages.hsbremen.de/~kortenfr/Aerodynamik/script/content.html
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ed40611c-5cb4-4d44-9f7f-e9d381f3e4eb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.