PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Phenomenological and numerical issues concerning dynamics of nonisobaric multicomponent diffusion of gases in macroporous media

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The homogeneity of an immiscible liquid–liquid system was investigated in a baffled vessel agitated by a Rushton turbine. The dispersion homogeneity was analyzed by comparing Sauter mean diameters and drop size distribution (DSD) determined in different measured regions for various impeller speeds. The sizes of droplets were obtained by the in-situ measurement technique and by the Image Analysis (IA) method. Dispersion kinetics was successfully fitted with Hong and Lee (1983) model. The effect of intermittency turbulence on drop size reported by Bałdyga and Podgórska (1998) was analyzed and the multifractal exponent 𝛼𝐹𝑇 was evaluated.
Rocznik
Strony
223--–234
Opis fizyczny
Bibliogr. 18 poz., rys.
Twórcy
  • Cracow University of Technology, Faculty of Chemical Engineering and Technology, ul. Warszawska 24, 31-155 Kraków, Poland
  • Cracow University of Technology, Faculty of Chemical Engineering and Technology, ul. Warszawska 24, 31-155 Kraków, Poland
Bibliografia
  • 1. Arnold K.R., Toor H.L., 1967. Unsteady diffusion in ternary gas mixtures. AIChE J., 13, 909–914. DOI: 10.1002/ aic.690130518.
  • 2. Arnošt D., Schneider P., 1995. Dynamic transport of multicomponent mixtures of gases in porous solids. Chem. Eng. J., 57, 91–99. DOI: 10.1016/0923-0467(94)02900-8.
  • 3. Boroń D., 2020. Izobaryczna metoda stacjonarna wyznaczania współczynników dyfuzji w materiałach porowatych. Przem. Chem., 99, 785–788. DOI: 10.15199/62.2020.5.21.
  • 4. Boroń D., Tabiś B., 2020. Udział i znaczenie przepływu lepkiego w nieizobarycznej dyfuzji gazów przez materiały porowate. Przem. Chem., 99, 1717–1716. DOI: 10.15199/62.2020.12.4.
  • 5. Duncan J.B., Toor H.L., 1962. An experimental study of three component gas diffusion. AIChE J., 8, 38–41. DOI: 10.1002/aic.690080112.
  • 6. Finlayson B.A., 1972. The method of weighted residuals and variational principles. Academic Press, New York. DOI: 10.1137/1.9781611973242.
  • 7. Gear C.W., 1971. Numerical initial value problems in ordinary differential equations. Prentice-Hall, Englewood Cliffs, New Jersey. Ho C.K., Webb S.W. (Eds.), 2006. Gas transport in porous media. Springer, Netherlands. DOI: 10.1007/1-4020-3962-X.
  • 8. Krishna R., Wesseling J.A., 1997. The Maxwell–Stefan approach to mass transfer. Chem. Eng. Sci., 52, 861–911. DOI: 10.1016/S0009-2509(96)00458-7.
  • 9. Mason E.A., Malinauskas A.P., 1983. Gas transport in porous media: The dusty gas model. Elsevier, Amsterdam.
  • 10. Remick R.R., Geankoplis C.J., 1970. Numerical study of three-component gaseous diffusion equations in transi tion region between Knudsen and molecular diffusion. Ind. Eng. Chem. Fundam., 9, 206–210. DOI: 10.1021/ i160034a003.
  • 11. Remick R.R., Geankoplis C.J., 1974. Ternary diffusion of gases in capillaries in the transition region between Knudsen and molecular diffusion. Chem. Eng. Sci., 29, 1447–1455. DOI: 10.1016/0009-2509(74)80169-7.
  • 12. Schiesser W.E., 1991. Numerical methods of lines integration of partial differential equations. Academic Press, San Diego.
  • 13. Tabiś B., Bizon K. 2020. Opracowanie metody linii do całkowania dynamiki dyfuzji wieloskładnikowej w mater iałach makroporowatych. Prace Katedry Inżynierii Chemicznej i Procesowej Politechniki Krakowskiej.
  • 14. Tabiś B., Bizon K., 2018. Dyfuzyjny ruch masy. Dyfuzja w gazach doskonałych i płynach rzeczywistych. Wydawnictwa Politechniki Krakowskiej, Kraków.
  • 15. Tabiś B., Boroń D., 2020. Application of the dusty gas model for determining structural parameters of porous media. Przem. Chem., 99, 888–891. DOI: 10.15199/62.2020.6.11.
  • 16. Tuchlenski A., Uchytil P., Seidel-Morgenstern A., 1998. An experimental study of combined gas phase and surface diffusion in porous glass. J. Membr. Sci., 140, 165–184. DOI: 10.1016/S0376-7388(97)00270-6.
  • 17. Veldsink J.W., Versteeg G.F., van Swaaij W.M.P., 1994. An experimental study of diffusion and convection of multi component gases through catalytic and non-catalytic membranes. J. Membr. Sci., 92, 275–291. DOI: 10.1016/0376- 7388(94)00087-5.
  • 18. Yang J., Čermáková J., Uchytil P., Hamel C., Seidel-Morgenstern A., 2005. Gas phase transport, adsorption and surface diffusion in a porous glass membrane. Catal. Today, 104, 344–351. DOI: 10.1016/j.cattod.2005.03.069.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ed3f003e-ba87-459a-b516-bb0927f151c7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.