PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Removal of Nitramine Explosives in Aqueous Solution by UV-Mediated Advanced Oxidation Process in Near-Neutral Conditions

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Explosive compounds are hazardous to the environment, posing a serious risk to human and animal health and the ecosystem. The primary goal of research was to compare the efficiency of UV/H2O2, photo-Fenton, electro (EO)/ UV/H2O2 processes at near-neutral pH (pH=6) on the degradation of nitramine explosives (NAs), such as hexogen (RDX), octogen (HMX), and tetryl (TET), in an aqueous solution. The effect of operational conditions, likely pH of the solution, initial H2O2 concentration, initial Fe2+ concentration, and solution temperature, was observed. The removal kinetics fit with first-order kinetics and were in the order: photo-Fenton >EO/UV/ H2O2 > UV/ H2O2. The results showed higher rate constant values for TET, RDX and HMX removal by UV/ H2O2 (k = 0.07778, 0.03791 and 0.03786 min-1), EO/UV/ H2O2 (k = 0.16599, 0.1475 and 0.08674 min-1) and photo-Fenton (k = 0.18018, 0.1501 and 0.09336 min-1) processes. Furthermore, TET, RDX and HMX were mineralized at 59.7%, 45.1%, and 25.1 %, respectively, under optimum conditions after 60 min of the photo-Fenton process. From the economic perspective, photo-Fenton only requires 2.132–4.113 kWh m-3 to completely reduce NAs. Finally, acute toxicity towards Vibrio fischeri was defeated after usage of near-neutral photo-Fenton. Thus, photo-Fenton at circum-neutral is promising for low-cost, eco-friendly and efficient processes for treating nitramine explosives in aqueous solutions.
Słowa kluczowe
Rocznik
Strony
232--243
Opis fizyczny
Bibliogr. 30 poz., rys., tab.
Twórcy
autor
  • Institute of New Technology, Academy of Military Science and Technology, 17 Hoang Sam str., Ha Noi, Viet Nam
  • Military Industrial College, 22/103 Ly Son str, Ngoc Thuy, Long Bien, Ha Noi, Viet Nam
  • College of Chemical Defense Officer/Chemical Corps; Tan Phu, Son Tay dictrict, Ha Noi, Viet Nam
autor
  • Institute of New Technology, Academy of Military Science and Technology, 17 Hoang Sam str., Ha Noi, Viet Nam
autor
  • Institute For Tropical Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet str., Ha Noi, Viet Nam
autor
  • Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet str., Ha Noi, Viet Nam
  • Thuyloi University, 175 Tay Son str., Dong Da, Ha Noi, Viet Nam
Bibliografia
  • 1. Alfonso-Muniozguren, P., Cotillas, S., Boaventura, R.A.R., Moreirac, F.C.,Lee, J.,Vilarc, V.J.P. 2020. Single and combined electrochemical oxidation driven processes for the treatment of slaughterhouse wastewater. Journal of Cleaner Production. 270, 121858.
  • 2. Ali, A. S., Nomura, K., Homonnay,Z., Kuzmann,E., Scrimshire, A., Bingham, P.A., Krehula, S., Ristić, M., Musić, S., Kubuki, S. 2019.The relationship between local structure and photo-Fenton catalytic ability of glasses and glass-ceramics prepared from Japanese slag. Journal of Radioanalytical and Nuclear Chemistry, 322, 751–761.
  • 3. Andreozzi, R, Caprio, V., Insola, A., Marotta R. 1999. Advanced oxidation processes (AOP) for water purification and recovery. Catalysis Today. 53(1), 51-59.
  • 4. Asaithambi, P., Saravanathamizhan, R., Matheswaran, M. 2015. Comparison of treatment and energy efficiency of advanced oxidation processes for the distillery wastewater. International Journal of Environmental Science and Technology. 12, 2213–2220
  • 5. Raju, B., Keerthi, R., Latha, S., Prabhakar, S. 2011. Degradation of dyes by UV/O3/H2O2 and electrooxidation techniques. Water Practice and Technology, 6(1).
  • 6. Bishop, R.L., Harradine, D.M., Flesner, R.L., Larson, S.A., Bell D.A. 2000. Safe operating temperatures for pressurized alkaline hydrolysis of HMXbased explosives. Industrial and Engineering Chemistry Research, 39(5), 1215–1220.
  • 7. Bose, P., Glaze, W.H., Maddox, D.S. 1998. Degradation of RDX by various advanced oxidation processes: I. Reaction rates. Water Research, 32(4), 997–1004.
  • 8. Casado, C., Moreno-SanSegundo, J., Obra J., García, B.E., Pérez, J.A.S., Marugán, J. 2021. Mechanistic modelling of wastewater disinfection by the photo-Fenton process at circumneutral pH. Chemical Engineering Journal. 403(1), 12633
  • 9. Clarizia, L., Russo, D., Somma, I.D., Marotta, R., Andreozzi, R. 2017. Homogeneous photo-Fenton processes at near neutral pH: A review. Applied Catalysis B: Environmental.209, 358-371
  • 10. Cyplik, P., Marecik,R., Piotrowska-Cyplik,A., Olejnik,A., Drożdżyńska, A, Chrzanowski, L. 2012. Biological Denitrification of High Nitrate Processing Wastewaters from Explosives Production Plant. Water, Air, & Soil Pollution, 223(4), 1791–1800.
  • 11. Dalvand, A., Gholami,M., Joneidi, A., Mahmoodi, N.M. 2011. Dye Removal, Energy Consumption and Operating Cost of Electrocoagulation of Textile Wastewater as a Clean Process. CLEAN Soil, Air, Water. 39(7), 665–672.
  • 12. Fallahzadeh, R.A., Mahvi, A.H., Meybodi, M.N., Ghaneian, M.T., Dalvand, A., Salmani, M.H., Fallahzadeh, M., Ehrampoush, M.H. 2019. Application of photo-electro oxidation process for amoxicillin removal from aqueous solution: Modeling and toxicity evaluation. Korean Journal of Chemical Engineering. 36, 713–721.
  • 13. Fiala, E.S. 1977. Investigations into the metabolism and mode of action of the colon carcinogens 1,2‐dimethylhydrazine and azoxymethane. Cancer.
  • 14. Freedman, D.L. and Sutherland, K.W. 1998. Biodegradation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) under nitrate-reducing conditions. Water Science and Technology, 38(7), 33–40.
  • 15. Hao, O.J. and Phull, K.K. 1993. Wet oxidation of nitrotoluenesulfonic acid: some intermediates, reaction pathways, and byproduct toxicity. Environmental Science & Technology, 27(8), 1650–1658.
  • 16. International Organization for Standardization 2007. Water quality-Determination of the inhibitory effect of water samples on te light emission of vibrio fischeri (Luminescent bacteria test)Part 3: Method using freeze-dried bacteria’, ISO 11348-3:2007.
  • 17. Khue, D.N., Lam, T.D., Chat, N.V., Bach, V.Q., Minh, D.B., Loi, V.D., Anh, N.V. 2014. Simultaneous degradation of 2,4,6-trinitrophenyl-N-methylnitramine (Tetryl) and hexahydro-1,3,5-trinitro-1,3,5 triazine (RDX) in polluted wastewater using some advanced oxidation processes. Journal of Industrial and Engineering Chemistry. 20(4), 1468–1475.
  • 18. Khue, D.N., Lam, T.D., Minh, D.B., Loi, V.D., Nam, N.H., Bach, N.Q., Anh, N.V., Hoang, N.V., Hung, D.D. 2016. Enhancement of Electron Transfer in Various Photo-Assisted Oxidation Processes for Nitro-Phenolic Compound Conversion. Journal of Electronic Materials, 45(8), 4221–4227.
  • 19. Khue, D.N., Lam, T.D., Hung, D.D., Bach, V.Q., Anh N.V., Nam, N.H., Thai, N.V., Minh, D.B., 2018. Parameters controlling the advanced oxidation degradation kinetics of nitroglycerin and pentaerythritol tetranitrate. Green Processing and Synthesis. 7, 61-67.
  • 20. Larsson, D.G.J., de Pedro, C. and Paxeus, N. 2007. Effluent from drug manufactures contains extremely high levels of pharmaceuticals. Journal of Hazardous Materials. 148(3), 751–755.
  • 21. Lewis-Younger, C.R., Mamalis, N., Egger, M.J, 2000. Lens Opacifications Detected by Slitlamp Biomicroscopy Are Associated With Exposure to Organic Nitrate Explosives. Archives of Ophthalmology. 118(12), 1653–1659.
  • 22. Lingamdinne, L.P. 2015. Influencing factors on sorption of TNT and RDX using rice husk biochar. Journal of Industrial and Engineering Chemistry, 32, 178–186.
  • 23. Liou, M.J., Lu, M.C., Chen, J.N. 2003. Oxidation of explosives by Fenton and photo-Fenton processes. Water Research, 37(13), 3172–3179.
  • 24. De Luca, A., Dantas, R.F., Esplugas, S. 2014. Assessment of iron chelates efficiency forphoto-Fenton at neutral pH. Water Research, 61(15), 232-242.
  • 25. Martínez-Huitle, C.A., Santos, E.V., Araújo, D.M., Panizza, M. 2012. Applicability of diamond electrode/anode to the electrochemical treatment of a real textile effluent. Journal of Electroanalytical Chemistry. 674, 103–107.
  • 26. Odetola, C., Trevani, L.N., Easton, E.B. 2017 .Photo enhanced methanol electrooxidation: Further insights into Pt and TiO2 nanoparticle contributions. Applied Catalysis B: Environmental. 210, 263-275.
  • 27. Radovic, M., Mitrović Jelena Z., Kostić Miloš M., Bojić Danijela V., Petrović Milica M., Najdanović Slobodan M., Bojić A.L. 2015. Comparison of ultraviolet radiation/hydrogen peroxide, Fenton and photo-Fenton processes for the decolorization of reactive dyes. Hemijska industrija, 69(6), 657–665.
  • 28. Rizzo, L. 2011. Bioassays as a tool for evaluating advanced oxidation processes in water and wastewater treatment. Water Research.
  • 29. Spanggord, R., Mabey, W.R., Chou, T.W., Lee,S. A., Philip L.1983. Environmental Fate Studies of HMX. p. 61.
  • 30. Zhai, J., Ma H., Liao J., Rahaman H.M., Yang Z., Chen Z. 2018. Comparison of Fenton, ultraviolet– Fenton and ultrasonic–Fenton processes on organics and colour removal from pre-treated natural gas produced water. International Journal of Environmental Science and Technology, 15, 2411-2422.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ed39546b-fbb6-4f12-bce3-4c70b2e6bbe3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.