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Abstract  

The paper contains the results of theoretical and numerical studies within the scope of kinetic criterion 
of stability loss of slender non-prismatic column subjected to the follower force directed towards the positive 

pole (the case of specific load). Shape of the system approximation by a linear function and polynomial of 
degree 2 was considered. On the basis of the Bernoulli – Euler’s theory, the mechanical energy was defined. 
The differential equations of motion and natural boundary conditions were determined according to the 

Hamilton’s principle. The issue of free vibrations was solved using the small parameter method. Within the 
range of numerical calculations, the changes in the eigenvalues were presented as a function of external load 

with variable geometrical parameters of the system, including parameters resulting from the shape 

approximation and parameters of loading structure. 
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1. Introduction 

Non-prismatic systems are commonly used in mechanics and mechanical constructions. 

Due to increasing technical requirements for the designers, an optimal shapes of 

structures, that will ensure an increase in transferred load or mass reduction are looked 

for. The issue of dynamics of slender non-prismatic systems is the subject of many 

scientific publications. 

The dynamic analysis of Bernoulli – Euler’s beam with stepped variable flexural 
stiffness with discrete elements was presented in work [1]. The problem was solved on 

the basis of the mode summation method. The results regarding to the issue of stability 

and free vibrations of non-prismatic column under Euler’s load were shown in 
publication [2]. The solution of vibration problem of beam with stepped variable cross-

section was presented in [3]. 

In scientific papers, the shape optimization was based on different methods, such as 

the Lagrange multiplier formalism [4], modified simulated annealing algorithm [5], 

finite element method [6], cellular automata method [7] or using Green’s function 
properties [8]. 
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2. The physical model of the system 

A slender non-prismatic column of rectangular cross-section subjected to the chosen 

case of specific load is considered in this paper. The physical model of analysed system 

is presented in Figure 1. To model cross-section variable along the axis, the structure 

was divided into n segments of constant length l and thickness h and variable width b. It 

is assumed that total volume of each segments Vobj, total length of the column 

.constnlL =×= and the values of material density r as well as Young’s modulus E of 

each parts are constant. In addition, the value of width b of segments must satisfy the 

condition that hb ³ . The column’s shape was described by linear 

function ( ) ( ) dxZaxb +×= 2 and by polynomial of degree 2 ( ) ( ) [ ][ ]qpxqpaxb +-×= 2
,2 , 

where Lx ££0 . 

 

 

Figure 1. The scheme of physical model of considered column 

The load by follower force directed towards the positive pole (the case of specific 

load, see [9]) is achieved by loading and receiving heads of circular outlines. 

The direction of the force P is tangential to the line of deflection of end of system 

( Lx = ) and additionally passes through stationary point O located on the non-deformed 

axis of the column at the distance of R from its free end (positive pole). The system is 

connected with receiving head through infinitely rigid element l0, which consideration is 

necessary for reasons relating to the construction. 
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3. The mathematical model 

On the basis of the physical model of non-prismatic column (comp. Figure 1), the total 

mechanical energy of the system was defined. The potential energy V consists of: 

· energy of bending elasticity: 

( ) ( )
ò ÷

ø
ö

ç
è
æå

¶

¶=
=

l

i

i

ii
n

i

i dx
x

txWEJ
V

0
2

2
2

1

1
,

2
 (1) 

· potential energy V2 resulting from the external load: 
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The kinetic energy T of the system is formulated in the following form:  
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The solution of the problem of free vibrations of column was obtained on the basis of 

Hamilton’s principle (see [2,9]), using the properties of the calculus of variation: 
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where t1, t2 – coordinates of time, d  – variation operator. 

Known a priori geometrical boundary conditions and continuity conditions were written 

as follows: 
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where the condition (10) results from the geometry of loading head. 

Taking into account the variation of mechanical energy (1-4) and conditions (6-10) in 

the equation (5), the following relations were obtained: 

– differential equations of motion: 
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– missing natural boundary condition and continuity conditions: 
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The solution of the differential equations of motion was obtained on the basis of small 

parameter method, which consists of expanding of nonlinear members of differential 

equations into the power series with respect to the amplitude parametere ( 1<<e ). 

4. The Results of Numerical Calculations 

To compare the results, the following dimensionless parameters were determined: 

– external load parameter 
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– parameter of frequency of natural vibrations 
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– parameters describing cross-section variable along the axis of the column 

,     ,     %,100 **1*

L

q
q

L

p
p

L

bb
Z n ==×

-
=  (17-20) 

– radius of loading head parameter 

L

lR
R 0* -

= , (21) 

where the subscript „pr” refers to the geometrical parameters of prismatic column 
(a comparative system). 

The results of numerical computations in the scope of kinetic criterion of stability 

loss were shown in Figures 2 and 3.The considerations are limited to presentation of 

changes in two first frequencies of natural vibrations of column (W1, W2) as a function of 

the parameter of external load. In Figure 2., the changes in first frequency of natural 

vibration of non-prismatic system for different values of taper parameter Z (shape 

approximation by linear function) was illustrated. The results regarding to the 

approximation by quadratic function were presented in Figure 3., taking into account 

variable location of a vertex of parabola (p*, q* parameters). 
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Figure 2.The first frequency of vibration of non-prismatic column approximated by 

linear function (R*=1.3) for selected values of taper parameter Z 

 

 

Figure 3. The characteristic curves of column approximated by quadratic function 

(R*=0.3) for chosen values of parameters p* and q* 

The value of critical load for presented curves on the plane dimension less parameter 

of external load – dimensionless parameter of frequency of free vibrations is determined 

for W = 0. The results regarding to the values of critical load parameter, obtained on the 

basis of the kinetic criterion of stability loss, show compliance with the results from the 

energetic method (the static criterion of loss of stability).Presented courses of changes in 

eigenvalues have the positive, zero or negative slope, depending on the value of external 

load and radius of loading head. Therefore, considered structures may be classified as a 

divergent or divergent pseudo fluttering type of system. 
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5. Conclusions 

The analysis of free vibrations of non-prismatic column subjected to the follower force 

directed towards the positive pole was presented in this paper. On the basis of conducted 

numerical calculations, the following conclusions were formulated: 

– shape of system approximation effects the value of frequency of vibration. The value 

of critical load of the system depends on the parameters describing shape of the column 

and geometrical parameters of loading structure, 

– depending on the value of radius of the loading head parameter, the system under 

consideration may be classified as the divergent or divergent pseudo fluttering type 

of system, 

– approximation of the shape of the considered column is restricted by the condition 

which states that the value of width b of each segments of system must be greater than or 

equal to the thickness h of segments. 
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