PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Przegląd aktualnych kierunków badań w zakresie zastosowań modelu fraktalnego w symulacjach wyładowań elektrycznych

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
EN
Review of current research trends in stochastic methods of simulations of electrical discharges
Języki publikacji
PL
Abstrakty
PL
Niniejszy artykuł zawiera przegląd aktualnych kierunków badań w zakresie stochastycznych metod symulacji wyładowań elektrycznych, opublikowanych w ostatnich latach w wiodących światowych czasopismach technologiczno-badawczych. Przedstawiony w niniejszej pracy aktualny stan badań ma umożliwić wytyczenie programu dalszych badań, mogącego wspomóc rozwój tego obszaru badawczego poprzez zwiększenie wiedzy o zjawiskach podstawowych istotnych dla eksploatacji i dalszego rozwoju systemu elektroenergetycznego.
EN
Present publication contains review of current research in stochastic methods of numerical simulations of electrical discharges published in leading technological journals in recent years. Aim of the presented state-of-the-art research in modeling of electrical discharges is determining course of further research in simulations of electrical discharges, especially in range of fundamental research crucial for further development of protection systems of power lines and equipment.
Rocznik
Strony
275--279
Opis fizyczny
Bibliogr. 36 poz., rys.
Twórcy
  • Instytut Energetyki, ul. Mory 8, 01-330 Warszawa
  • Politechnika Warszawska, Wydział Elektryczny, Instytut Elektroenergetyki, ul. Koszykowa 75, 00-662 Warszawa
Bibliografia
  • [1] Niemeyer, Lucian, Luciano Pietronero, and Hans J. Wiesmann."Fractal dimension of dielectric breakdown." Physical Review Letters 52.12 (1984): 1033
  • [2] Femia, N., L. Niemeyer, and V. Tucci. "Fractal characteristics of electrical discharges: experiments and simulation." Journal of Physics D: Applied Physics 26.4 (1993): 619.
  • [3] Ioannidis, A. I., et al. "Development of a fractal-based model for simulating streamer flashover of insulating surfaces." 2021 IEEE Conference on Electrical Insulation and Dielectric Phenomena (CEIDP). IEEE, 2021.
  • [4] Wiesmann, H. J., and H. R. Zeller. "A fractal model of dielectric breakdown and prebreakdown in solid dielectrics." Journal of applied physics 60.5 (1986): 1770-1773.
  • [5] Kudo, K. "Fractal analysis of electrical trees." IEEE Transactions on Dielectrics and Electrical Insulation 5.5 (1998): 713-727.
  • [6] Wu, Kai, Yasuo Suzuoki, and Hengkun Xie. "Sub-fractal structure of single partial discharge in an electrical tree." Journal of Physics D: Applied Physics 33.22 (2000): 2954.
  • [7] Hariharan, M., and Sharanya Srinivas. "Stochastic Modelling of Electrical Tree Progression in Modern High Voltage Power Cables." International Journal of Computer Applications 149.7 (2016).
  • [8] Rodríguez-Serna, Johnatan M., Ricardo Albarracín-Sánchez, and Isabel Carrillo. "An improved physical-stochastic model forsimulating electrical tree propagation in solid polymeric dielectrics." Polymers 12.8 (2020): 1768.
  • [9] Bahder, G., et al. "Physical model of electric aging and breakdown of extruded pplymeric insulated power cables." IEEE Transactions on Power Apparatus and Systems 6 (1982): 1379-1390.
  • [10] Riousset, Jeremy A., et al. "Three-dimensional fractal modeling of intracloud lightning discharge in a New Mexico thunderstorm and comparison with lightning mapping observations." Journal of Geophysical Research: Atmospheres 112.D15 (2007).
  • [11] Pasko, Victor P., and Jeremy J. George. "Three-dimensional modeling of blue jets and blue starters." Journal of Geophysical Research: Space Physics 107.A12 (2002): SIA-12.
  • [12] Ghaffarpour, Reza, and Saeid Zamanian. "Fractal-based lightning model for investigation of lightning direct strokes to the communication towers." Electrical Engineering (2022): 1-9.
  • [13] Yu, Wanshui, et al. "Numerical simulation of the lightning leader development and upward leader initiation for rotating wind turbine." Machines 10.2 (2022): 115.
  • [14] Petrov, N. I., G. N. Petrova, and F. D'alessandro. "Quantification of the probability of lightning strikes to structures using a fractal approach." IEEE Transactions on Dielectrics andElectrical Insulation 10.4 (2003): 641-654.
  • [15] Zhang, Xuewei, et al. "Study on the effectiveness of single lightning rods by a fractal approach." Journal of Lightning Research 1.1 (2009).
  • [16] Ioannidis, Alexios I., et al. "Lightning protection of theParthenon: A fractal-based approach." 2021 IEEE Industry Applications Society Annual Meeting (IAS). IEEE, 2021.
  • [17] A. Ioannidis, P. N. Mikropoulos, T. E. Tsovilis and N. Kokkinos, "A Fractal-Based Approach to Lightning Protection of HistoricalBuildings and Monuments: The Parthenon Case Study," in IEEE Industry Applications Magazine, doi: 10.1109/MIAS.2022.3160992.
  • [18] Rahiminejad, Abolfazl, and Behrooz Vahidi. "An Application of Fractal-Based Lightning for SFR Calculation of High Voltage Substations." Indian Journal of Science and Technology 10.15 (2017).
  • [19] Ioannidis, Alexios I., and Thomas E. Tsovilis. "Fractal-based approach for evaluating the shielding design of high voltage substations against direct lightning strikes." 2020 IEEE Industry Applications Society Annual Meeting. IEEE, 2020.
  • [20] Guo, Jun, et al. "A three-dimensional direct lightning strike model for lightning protection of the substation." IET Generation, Transmission & Distribution 15.19 (2021): 2760-2772.
  • [21] Ioannidis, Alexios I., and Thomas E. Tsovilis. "ShieldingFailure of High-Voltage Substations: A Fractal-Based Approach for Negative and Positive Lightning." IEEE Transactions on Industry Applications 57.3 (2021): 2317-2325.
  • [22] Li, Jianbiao, et al. "A new estimation model of the lightning shielding performance of transmission lines using a fractal approach." IEEE Transactions on Dielectrics and Electrical Insulation 18.5 (2011): 1712-1723.
  • [23] Rahiminejad, Abolfazl, and Behrooz Vahidi. "Fractal-basedlightning model for shielding failure rate calculation of transmission lines." IET Science, Measurement & Technology 12.6 (2018): 719-725.
  • [24] Datsios, Zacharias G., et al. "A parametric study on the critical lightning currents causing flashover to the overhead lines of a±533 kV HVDC transmission system." 2020 IEEE International Conference on Environment and Electrical Engineering and 2020 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe). IEEE, 2020.
  • [25] Datsios, Zacharias G., et al. "A Stochastic Model for Evaluating the Lightning Performance of a− 400 kV HVDC Overhead Line." IEEE Transactions on Electromagnetic Compatibility 63.5 (2021): 1433-1443.
  • [26] CIGRE WG C4.26, “Evaluation of lightning shielding analysis methods for EHV and UHV DC and AC transmission lines,” Technical Brochure 704, Oct. 2017.
  • [27] Rahiminejad, Abolfazl, Behrooz Vahidi, and Jinliang He. "A fractal-based stepped downward leader model including branched channel charge distribution and branch fading." Electric Power Systems Research 176 (2019): 105940.
  • [28] Rahiminejad, Abolfazl, and Behrooz Vahidi. "Fractal-basedlightning model for shielding failure rate calculation of transmission lines." IET Science, Measurement & Technology 12.6 (2018): 719-725.
  • [29] Nguyen, D. T., Grant Deegan, and Franco D'Alessandro. "Fractal nature of probabilistic model of lightning discharge."Proceedings of IEEE Region 10 International Conference on Electrical and Electronic Technology. TENCON 2001 (Cat. No. 01CH37239). Vol. 2. IEEE, 2001.
  • [30] Hao-jiang, Wan, Wei Guang-hui, and Chen Qiang. "Estimation on lightning protection performance using a fractal approach." 2010 International Conference On Computer Design and Applications. Vol. 4. IEEE, 2010.
  • [31] Syssoev, A. A., et al. "Numerical simulation of stepping and branching processes in negative lightning leaders." Journal of Geophysical Research: Atmospheres 125.7 (2020): e2019JD031360.
  • [32] Amarasinghe, Dulan, et al. "Fractal dimension of long electrical discharges." Journal of Electrostatics 73 (2015): 33-37.
  • [33] Vayanganie, Amila, et al. "Fractal Analysis of Long Laboratory Sparks of high Speed Video Recordings." ICLP, 2016.
  • [34] Ioannidis, A. I., et al. "Fractal-Based Approach for Modelling Electric Breakdown of Air Gaps: An Application to a 75 cm Positive Rod-Plane Gap." The International Symposium on High Voltage Engineering. Springer, Cham, 2019.
  • [35] J. He, X. Zhang, R. Zeng, and Y. Tu, “Protection zone estimation for high lightning rods by a fractal approach”, 16thInternational Symposium on High Voltage Engineering, Cape Town, South Africa, Aug. 2009
  • [36] M. Molas, M. Szewczyk, „Experimental Evaluation of 3D Tortuosity of Long Laboratory Spark Trajectory for Sphere-Sphere and Sphere-Plane Discharges under Lightning and Switching Impulse Voltages,” Energies 2021, 14, 7409. DOI: https://doi.org/10.3390/en14217409
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ed353435-ea54-4826-9f9d-6aaff2617ee0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.