Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This document describes numerical analyses performed on a SAW gas sensor in a non-steady state. Our work involved predicting SAW velocity changes in relation to the surface electrical conductivity of the sensing layer. We found that the conductivity of the rough sensing layer (above a piezoelectric waveguide or quartz) is determined by the diffused gas molecule concentration profile inside it. Specifically, we present numerical results for the DMMP gas concentration profile (CAS Number 756-79-6) within an (RR)-P3HT layer during the non-steady state recovery step. The core of these investigations was to understand thin film interaction with target gases in a SAW sensor configuration, using the diffusion equation for polymers. The outcomes of these numerical analyses provide valuable insights for selecting sensor design conditions, including the sensor layer's morphology, thickness, operating temperature, and type. The numerical results, generated using Python code, are then elaborated upon and examined.
Rocznik
Tom
Strony
6
Opis fizyczny
Bibliogr. 30 poz., rys.
Twórcy
autor
- The Academy of Creative Development - the Foundation Marklowice, Poland
autor
- Silesian University of Technology, Gliwice, Poland
autor
- Silesian University of Technology, Gliwice, Poland
autor
- Silesian University of Technology, Gliwice, Poland
Bibliografia
- [1] N. Matsunga, G. Sakai, K. Shimanoe, N. Yamazoe, “Formulation of gas diffusion dynamics for thin film semiconductor gas sensor based on simple reaction-diffusion equation”, Sensors and Actuators B, 96, pp. 226-233,2003
- [2] J. Wrotniak, W. Jakubik, P. Powroźnik, A. Stolarczyk, M. Magnuski, Acoustic tests of RR- P3HT type polymer for the detection of DMMP in the air [in Polish: Akustyczne badania polimeru typu RR-P3HT do wykrywania DMMP w powietrzu, Przegląd Elektrotechniczny, 94(6): 70-73, 2018 https://doi.org/10.15199/48.2018.06.12
- [3] T. Hejczyk, M. Urbańczyk, “WO3-Pd Structure in SAW Sensor Hydrogen Detection”, Acta Physica Polonica A, 120, 4, 616-620, 2011
- [4] T. Hejczyk, M. Urbańczyk, W. Jakubik, “Analytical Model of Semiconductor Sensor Layers in SAW Gas Sensors”, Acta Physica Polonica A, 118, 6, 1148-1152, 2010.
- [5] T. Hejczyk, M. Urbańczyk, T. Pustelny, W. Jakubik, “Numerical and Experimental Analysis of the Response of a SAW Structure with WO3 layers an Action of Carbon Monoxide”, Archives of Acoustics 40, 1, 19-24, 2015.
- [6] T. Hejczyk, M. Urbańczyk, R. Wituła, E. Maciak, “SAW sensors for detection of hydrocarbons. Numerical analysis and experimental results”, Bulletin of the Polish Academy of Sciences: Technical Sciences, 60, 3, 589-595, 2012.
- [7] T. Hejczyk, J. Wrotniak, M. Magnuski, W Jakubik. Experimental and Numerical Acoustoelectric Investigation of the New SAW Structure with (RR)-P3HT Polymer in DMMP Detection, Archives of Acoustics, Vol. 46, No. 2; p. 313-322, 2021, https://doi.org/10.24425/aoa.2021.136585.
- [8] M. Magnuski, J. Wrotniak J, Patent no PAT.230526,”System for detecting chemical compounds in gaseous atmospheres, with a sensor using surface acoustic waves (SAW)”, 2016.
- [9] M. Urbańczyk, “Analytical model of a SAW gas sensor”, WIT Transactions on Computational Methods and Experimental Measurements, Proceedings of the CMEM11, WIT Press Southampton, 48, 229-239, 2011.
- [10] M. Urbańczyk, “Gas Sensors on the base of Surface Acoustic Wave. 2011 Monograph, Edited by SUT, Gliwice, 2013 (in Polish).
- [11] M. Urbańczyk, T.Hejczyk, “Analysis of non-steady state in SAW gas sensors with semiconducting sensor layers”, Acta Physica Polonica A, 120, 4, 789-793,2011.
- [12] N. Matsunga, G. Sakai, K. Shimanoe, N. Yamazoe, (2001), “Diffusion equation-based study of thin film semiconductor gas sensor-response transient”, Sensors and Actuators B, 83, 216-221, 2001.
- [13] J. Crank, „The Mathematics of Diffusion”, formula in page. 262, OxfordUniversity Press, 1975.
- [14] B.A. Auld Acoustic Fields and Waves, 2, Wiley, New York; p. 271-290, 1973.
- [15] T. Hejczyk, T. Pustelny Analysis of the Saw System with the PANI + Nafion Sensing Structure for Detection of Low Concentration Carbon Monoxide, Archives of Acoustics, Vol. 45, No. 4; pp. 681-686, 2020 https://doi.org/10.24425/aoa.2020.135274.
- [16] T. Hejczyk , J. Wrotniak , P. Powroźnik , W. Jakubik, „Numerical analysis and new formulas of the response stage, on recovery step, of a new SAW Structure with disappeared layer RR-P3HT in detection DMMP”, WSW&QA, 2025, https://doi.org/10.5162/20WWonAE/A9.
- [17] T. Hejczyk, T. Pustelny, B. Wszołek, W. Jakubik Numerical Analysis of Sensitivity of SAW Structure to the Effect of Toxic Gases, Archives of Acoustics 41, 4; p. 747-755, 2016, https://doi.org/10.1515/aoa-2016-0072.
- [18] P. Sakiewicz, R. Nowosielski, R. Babilas, D. Gąsiorek D, M. Pawlak, FEM simulation of Ductility Minimum Temperature (DMT) phenomenon in CuNi25 alloy, Journal of Achievements in Materials and Manufacturing Engineering, 61, issue 2, Dec. p. 274-280, 2013.
- [19] A. Michalska, A. Polyaniline micro- and nanostructures for biomedical applications, PhD Thesis (in Polish), 2011.
- [20] T. Hejczyk, G. Kamiński, R. Ogaza, Patent no PL 229696 B1, Application of the hybrid sensor with acoustic surface wave [in Polish]. p. 2-5, 2018.
- [21] P. Powroźnik, W. Jakubik, A. Kaźmierczak-Bałata, Detection oforganophosphorus (DMMP) vapour using phthalocyanine-palladium bilayer structures, EUROSENSORS, Procedia Engineering, 120; P. 368 - 371, 2015, https://doi.org/10.1016/j.proeng.2015.08.640.
- [22] K. Jasek, W. Miluski, M. Pasternak, New approach to saw gas sensors array response measurement, Acta Physica Polonica A, 120(4), p. 639-641, 2011, https://doi.org/10.12693/APhysPolA.120.639.
- [23] B. Pustelny, T. Pustelny, Transverse acoustoelectric effect applying in surface study of GaP: Te(111), Acta Physica Polonica A, 116, 3; p. 383 384, 2009, https://doi.org/10.12693/APhysPolA.116.383.
- [24] T. Pustelny, M. Procek, E. Maciak , A. Stolarczyk, S. Drewniak, M. Urbanczyk, M. Setkiewicz, K. Gut, Z. Opilski, Gas sensors based on nanostructuures of semiconductor ZnO and TiO2, Bulletin of the Polish Academy of Sciences: Technical Sciences, 60, 4; p. 853-859, 2012.
- [25] A. Kawalec, M. Pasternak, Microwave humidity sensor based on surface acoustic wave resonator with nafion layer, IEEE Transactions on Instrumentation and Measurement, 9(57); p. 2019-2023, 2008.
- [26] A. Kawalec, M. Pasternak M, K. Jasek, Measurements results of SAW humidity sensor with nafion layer, European Physical Journal: Special Topics, 154; P. 121-126, 2008.
- [27] R. Yoo, J. Kim, M. J. Song, W. Lee, J. S. Noh, Nano-composite sensors composed of single-walled carbon nanotubes and polyaniline for the detection of a nerve agent simulant gas, Sensor. Actuat. B-Chem, 209; 2015. p. 444-448, https://doi.org/10.1016/j.snb.2014.11.137.
- [28] T. Hejczyk, M. Urbańczyk, Numerical Optimization of Structures SAW Gas Sensors, Acta Physica Polonica A Vol. 124 No. 3.; p.432-435, 2013, https://doi.org/10.12693/APhysPolA.124.432.
- [29] T. Pustelny, A. Opilski, B. Pusteny, Determination of some kinetic parameters of fast surface states in silicon single crystals by means of surface acoustic wave method Acta Physica Polonica A Volume 114, Issue 6 A, p. A183-A190, 2008.
- [30] Y. Long, Y. Wang, X. Du, L. Cheng, P. Wu, Y. Jiang, The different sensitive behaviors of a hydrogen-bond acidic polymer-coated SAW sensor for chemical warfare agents and their simulants, Sensors, 15; p.18302-18314, 2015, https://doi.org/10.3390/s150818302.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ed3234ed-ea09-419c-babf-1c363fcaeb58
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.