Powiadomienia systemowe
- Sesja wygasła!
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this study, the torsional mode shapes of circular and non-circular functionally graded material shafts, focusing on triangular, rectangular, circular cross-sections are investigated. The shafts are composed of an aluminum-titanium (AlTi) alloy and various functionally graded materials, utilizing different mixing rules to create a gradient surface. The modal analysis is conducted using ANSYS Mechanical leading finite element analysis software to assess and visualize the vibrational characteristics of these shafts under torsional loading. Then, the same shafts made of isotropic material (pure Al) is prepared, and compared with respect to results. The objective is to understand the influence of FGMs compared to homogeneous and isotropic materials on the torsional behavior of shafts with non-circular geometries. By comparing the torsional mode shapes and frequencies, one can identify the distinct vibrational properties introduced by the gradient material composition. This comparison is highlight the potential advantages of FGM shafts in applications requiring tailored mechanical properties that traditional homogeneous materials cannot provide. The study also explores how the different cross-sectional shapes affect the torsional response, which is crucial for designing components subjected to twisting loads in aerospace, automotive, and construction industries. The results from ANSYS Mechanical are analyzed to extract the mode shapes and frequencies of torsional modes, providing a comprehensive understanding of how FG materials behave relative to isotropic counterparts under similar conditions. The study aims to show how the natural frequency and torsional mode shapes differ for a functionally graded material compared to isotropic material, may be useful for researchers working with applications where vibration behavior is crucial.
Czasopismo
Rocznik
Tom
Strony
art. no. e2025003
Opis fizyczny
Bibliogr. 14 poz., il., tab., wykr., wz.
Twórcy
autor
- Cracow University of Technology, Faculty of Mechanical Engineering
Bibliografia
- 1. Aminbaghai, M., Murín, J., Balduzzi, G., Hrabovsky, J., Hochreiner, G., Mang, H.A. (2017). Second-order torsional warping theory considering the secondary torsion moment deformation-effect. Eng. Struct. 147, 724–773.
- 2. Ashrafi, H.R., Beiranvand, P., Aghaei, M.Z., Jalili, D.D., (2018). Modal analysis of FGM plates (Sus304/Al2O3) using FEM. Bioceram Dev Appl, 8(112), 2.
- 3. Gawroński, W., Kruszewski, J., Ostachowicz, W., Tarnowski, J., Wittbrodt E. (1984). Finite element method in structural dynamics. Warszawa: Arkady.
- 4. Huyen, Nguyen Ngoc, and Nguyen Tien Khiem (2017). Modal analysis of functionally graded Timoshenko beam. Vietnam Journal of Mechanics 39(1): 31–50.
- 5. Khiem, N.T., Hai, T.T., & Huong, L.Q. (2023). Modal analysis of cracked FGM beam with piezoelectric layer. Mechanics Based Design of Structures and Machines 51(9): 5120–5140.
- 6. Khiem, N.T., Tran, H.T., & Nam, D. (2020). Modal analysis of cracked continuous Timoshenko beam made of functionally graded material. Mechanics Based Design of Structures and Machines 48(4): 459–479.
- 7. Kim, J.-H., Paulino, G.H. (2002). Isoparametric graded finite elements for nonhomogeneous isotropic and orthotropic materials, J. Appl. Mech. 69(4): 502–514.
- 8. Kruszewski, J. (1975). Finite stiff element method. Warszawa: Arkady.
- 9. Mashat, Daoud, S., et al. (2014). Free vibration of FGM layered beams by various theories and finite elements. Composites Part B: Engineering 59: 269–278.
- 10. Murin, J., Aminbaghai, M., Hrabovsky, J., Kutis, V., Paulech, J., Kugler, S. (2014). A new 3D FGM beam finite element for modal analysis. In: Proceedings of the 11th world congress on computational mechanics (WCCM XI), 5th European conference on computational mechanics (ECCM V), 6th European conference on computational fluid dynamics (ECFD VI). Barcelona.
- 11. Murin, J., Aminbaghai, M., Hrabovsky, J., Gogola, R., Kugler, S. (2016). Beam finite element for modal analysis of FGM structures. Engineering Structures 121: 1–18.
- 12. Nayak, P., Armani, A. (2022): Optimal design of functionally graded parts. Metals 12(8), 1335.
- 13. Tabatabaei Shahidzadeh, S.J., Fattahi, A.M. (2022). A finite element method for modal analysis of FGM plates. Mechanics Based Design of Structures and Machines 50(4), 1111–1122.
- 14. Timoshenko, S. (1983). History of strength of materials: with a brief account of the history of theory of elasticity and theory of structures. Courier Corporation.
Uwagi
1. Section "Mechanics"
2. Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ed269813-9030-4a5e-a30e-62844d550a95
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.