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on a continuous scale. In such situations, the lifetimes and repair times 
can be expressed in terms of the number of working and repairing 
periods (cycles), respectively. Thus, it is essential to construct discrete 
time reliability models for repairable multi-state systems. 

The discrete time reliability has drawn continuous attention in 
both model analysis and problem solution. Bracquemond and Gaud-
oin [5] presented a good overview of discrete probability distributions 
used in reliability for modeling discrete lifetimes of non-repairable 
systems. The discrete time reliability modeling for general binary 
systems can be found in [4, 22, 34]. Eryilmaz [14], Guerry [16] and 
Sadek and Limnios [35], presented the discrete time reliability models 
for Markov multi-state systems. The discrete time reliability models 
for semi-Markov multi-state systems were investigated in [1, 4, 10]. 
However, most of the reported works mainly focus on the issues of 

1. Introduction

The availability, as a performance measure, is one of the most im-
portant indicators for characterizing a repairable system and its com-
ponents. For repairable multi-state systems with various performance 
levels, the availability is more meaningful than reliability to measure 
the effectiveness of the system to satisfy consumer demand.

In the past few years, a variety of methods are available in the lit-
erature for analyzing the availability of repairable multi-state systems. 
Some of them are Monte Carlo simulation [41, 42], stochastic Petri 
nets [19, 21], universal generating function [24, 32], Markov models 
[6, 37] and the combinations of the above methods [9]. However, con-
ventional availability analysis methods for repairable multi-state sys-
tems are based on the continuous time models. In some engineering 
circumstances, it is sometimes impossible or inconvenient to measure 
the lifetimes and repair times length of some systems (components) 
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Wykorzystanie rozmytej transformaty do oceny rozmytej 
gotowości eksploatacyjnej dyskretnego 

w czasie systemu wielostanowego działającego 
w trybie drobnych uszkodzeń i napraw

This paper studies assessment approach of dynamic fuzzy availability for a discrete time multi-state system under minor failures 
and repairs. Traditionally, it was assumed that the exact reliability data of a component/system with discrete time are given in 
reliability analysis. In practical engineering, it is difficult to obtain precise data to evaluate the characteristics of a component/
system. To overcome the problem, fuzzy set theory is employed to deal with dynamic availability assessment for a discrete time 
multi-state system in this paper. A fuzzy discrete time Markov model with fuzzy transition probability matrix is proposed to analyze 
the fuzzy state probability of each component at any discrete time. The fuzzy Lz-transform of the discrete-state discrete-time fuzzy 
Markov chain is developed to extend the Lz-transform of the discrete-state continuous-time Markov model with crisp sets. Based 
on the α-cut approach and the fuzzy Lz-transform, the dynamic fuzzy availability of the system is computed by using parametric 
programming technique. To illustrate the proposed method, a flow transmission system is analyzed as a numerical example.
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W niniejszej pracy badano metodę oceny dynamicznej, rozmytej gotowości eksploatacyjnej (dostępności) dyskretnego w czasie 
systemu wielostanowego pracującego w trybie drobnych uszkodzeń i napraw. Tradycyjnie zwykło się zakładać, że analiza nie-
zawodności dostarcza dokładnych danych niezawodnościowych na temat danego dyskretnego w czasie komponentu/systemu. W 
praktyce inżynieryjnej jednak trudno jest uzyskać dokładne dane do oceny właściwości komponentu/systemu. W niniejszej pracy 
zaproponowano jak problem ten można rozwiązać wykorzystując do oceny dynamicznej gotowości dyskretnego w czasie systemu 
wielostanowego, teorię zbiorów rozmytych. Rozmyty model Markowa z dyskretnym czasem i rozmytą macierzą prawdopodo-
bieństw przejść zastosowano do analizy rozmytego prawdopodobieństwa stanu każdego elementu w dowolnym czasie dyskretnym. 
Opracowano rozmytą transformatę Lz rozmytego, dyskretnego w stanach i czasie łańcucha Markowa, która pozwala poszerzyć 
transformatę Lz modelu Markowa dyskretnego w stanach i ciągłego w czasie o zbiory ostre. W oparciu o metodę alfa przekrojów 
oraz rozmytą transformatę Lz, obliczono dynamiczną rozmytą gotowość eksploatacyjną systemu, wykorzystując do tego celu tech-
nikę programowania parametrycznego. Zastosowanie proponowanej metody zilustrowano na przykładzie liczbowym analizując 
układ przesyłu.

Słowa kluczowe:	 czas dyskretny, model Markowa, rozmyta transformata, system wielostanowy, dostępność.
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discrete time systems with the exact reliability data. As stated in Garg 
[15], the complicated system has the massive fuzzy uncertainty due to 
which it is difficult to get the exact probability of the events. Thus, it 
is of large practical value to investigate the availability assessment for 
discrete time repairable system with fuzzy uncertainty.

Fuzzy reliability theory, which is based on the fuzzy set theory in-
troduced by Zadeh [39,40], is becoming a useful tool for dealing with 
the imprecision and uncertainty problems of reliability evaluation for 
many industrial systems. The basic concept and theory of the fuzzy 
reliability have been introduced and developed by several authors [7, 
18, 27, 38]. More recently, fuzzy reliability research has focused on 
reliability/availability evaluation of fuzzy multi-state system accord-
ing to various analysis methods. Ding and Lisnianski [12] firstly pro-
vided the basic definition of the fuzzy multi-state system model, and 
then investigated the system reliability based on the proposed fuzzy 
universal generating function technique. The concepts of relevancy, 
coherency, equivalence, and performance evaluation algorithms for 
the fuzzy multi-state systems were given by Ding, Zuo, Lisnianski 
and Tian [13]. Liu and Huang [33] proposed a fuzzy Markov model 
to establish dynamic state probabilities of fuzzy multi-state elements, 
and investigated a dynamic fuzzy reliability assessment method for 
fuzzy multi-state systems. Li, Chen, Yi and Tao [25] developed inter-
val universal generating function to analyze the reliability of multi-
state systems when the available data of components are insufficient. 
Bamrungsetthapong and Pongpullponsak [3] studied the fuzzy system 
reliability for a non-repairable multi-state series-parallel system by 
using fuzzy Bayesian inference based on prior interval probabilities. 
Hu, Yue and Tian [17] provided a special assessment approach for 
evaluating the fuzzy steady-state availability of a repairable multi-
state series-parallel system based on fuzzy universal generating func-
tion and parametric programming technique. 

However, all the reported works for fuzzy multi-state system reli-
ability mainly focus on the issues of dynamic reliability/availability 
assessment for continuous time multi-state systems or steady-state 
availability assessment for repairable multi-state systems. The fuzzy 
reliability/availability assessment for a discrete-time multi-state sys-
tem has been seldom discussed in the literature. Moreover, availability 
has a wider scope than reliability as it takes into account maintenance 
time analysis in addition to failure time analysis [8]. Therefore, the 
main objective of our work is to present an analytical technique of 
dynamic fuzzy availability assessment for a discrete time repairable 
multi-state system (DTRMSS) with fuzzy consumer demand. The 
technique called the fuzzy Lz-transform is based on the combination 
of fuzzy universal generating function technique and discrete time 
Markov process method. In the presented paper, the fuzzy Lz-trans-
form for discrete-state discrete-time Markov process is developed to 
extend the Lz-transform for discrete-state continuous-time Markov 
process [28] with crisp sets. Minor failures and repairs of components 
[30] (that transitions can only occur between adjacent states) with 
fuzzy state transition probabilities are considered. Fuzzy discrete-state 
discrete-time Markov model is proposed to perform fuzzy state prob-
ability analysis for each component in dynamic modes. The dynamic 
fuzzy state probability, dynamic fuzzy performance level and dy-
namic fuzzy availability of the system are evaluated by the proposed 
fuzzyLz-transform method, and the -cutα of dynamic fuzzy availabil-
ity is computed according to parametric programming technique.

The rest of this paper is organized as follows. The discrete time 
fuzzy Markov model for a repairable multi-state component is pre-
sented in Section 2. Section 3 describes the definition of fuzzy Lz-
transform. The fuzzy dynamic availability assessment method for the 
DTRMSS is given in Section 4. The analytical technique and assess-
ment method are illustrated in Section 5 via a flow transmission sys-
tem. Conclusions are given in Section 6.

2. Discrete time repairable multi-state component

2.1.	 Markov model for repairable multi-state component

Consider a discrete time repairable multi-state component with 
m  different possible states ( ) 1,2, ,i i m=  , where 1  and m  repre-
sent perfect function and complete failure states, respectively. Assume 
that these states of the component correspond to different perform-
ance levels 1 2, , , mx x x , where ix  is the performance level associ-
ated with the state i. Let x(k) denote the performance level of the com-
ponent at the end of the kth time period (such as hour, day, month, 
etc.), x(k) takes values from 1 2{ , , , 0, 1,2, , }m ix x x x i m≥ =  : 
( ) 1 2{ , , , 0, 1,2, , }m ix k x x x x i m∈ ≥ =  , 0,1,k =  . Thus, the per-

formance level x(k) is a discrete-state discrete-time stochastic proc-
ess. 

For the repairable multi-state component, we assume that minor 
failures and repairs [30] are considered. Minor failures are failures 
causing component transition from state i  to the adjacent state 1i + , 
and minor repairs are repairs causing component transition from state 
i  to the adjacent state 1i − . In some components development proc-
ess, the life of the components need to test. The geometric distribution 
has an important application in testing the life of the components. 
Sarhan, Guess and Usher [36] stated that the geometric distribution 
is a common discrete distribution used to model the lifetime of a de-
vice. Eryilmaz [14] investigated the mean residual life of discrete time 
multi-state systems based on the geometric distribution. In our work, 
it is assumed that the time between transitions from one state to an-
other has geometric distribution with constant mean values , 11 i iq +  
and , 11 i ip − . Let 

icT  and 
irT  denote the time between transitions from 

the state i  to the state 1i +  and from the state i  to the state 1i − , 
respectively. We have:
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It is obvious that the process x(k) has the property of being mem-
ory-less. Furthermore, for the repairable multi-state component, its 
performance level x(k) ( 0,1,k =  ) is a discrete-state discrete-time 
Markov chain with the following one-step transition probability ma-
trix:
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That is, the one-step transition probability ijP  from component 
state i  to component state j  is determined by:
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(1)

w h e r e , 10 1i iq +≤ ≤ ( 1,2, , 1)i m= − , , 10 1i ip −≤ ≤ ( 2,3, , )i m= 

 
and , 1 , 10 1i i i iq p+ −≤ + ≤  ( 2,3, , 1)i m= − .

Let ( )iP k  denote the probability that the component is in state 
 ( 1,2, , )i i m=   at time k , the state probabilities of the component 

at any discrete time can be calculated by the matrix equation:

( ) ( ) ( ) ( ) ( ) ( ),1 2 1 2, , , 1 1 , , 1m mP k P k P k P k P k P k  =  − − −  ⋅    P     (2)

with the initial conditions:

	 ( ) ( ) ( ) ( )1 2 30 1,  0 = 0 0 0mP P P P= = = = 	 (3)

By solving the matrix equation (2) under the initial condition (3), 
we can determine the following matrix equation:

	 ( ) ( ) ( ) ( ) ( ) ( ),1 2 1 2, , , 0 0 , , 0 k
m mP k P k P k P P P  =   ⋅    P 

    (4)

The matrix equation (4) can be written as:

	 0
k

k = ⋅P P P 	 (5)

where ( ) ( ) ( )1 2, , ,k mP k P k P k=   P   is the row vec-
tor of the state probabilities of the component at time k  and 

( ) ( ) ( ) [ ],0 1 20 0 , , 0 = 1,0, ,0mP P P=   P    is the row vector of the 
state probabilities of the component at time 0. 

2.2.	 Fuzzy Markov model for repairable multi-state compo-
nent

In this subsection, we define the fuzzy discrete time repairable 
multi-state component and propose a discrete time fuzzy Markov 
model to evaluate the dynamic fuzzy state probability for the discrete 
time repairable multi-state component.

2.2.1.	 Definition and assumption

The fuzzy discrete time repairable multi-state component is de-
fined as the component in which the different state performance lev-
els, the corresponding state probabilities or one-step transition prob-
abilities between each pair of adjacent states are represented as fuzzy 
values. The general assumptions of a fuzzy discrete time repairable 
multi-state component are given as follows:

State index of the component is a crisp value taking integer (1)	
values only, and the state space is { }1,2,, ,m .

State performance level (2)	 x(k) of the component at time k   

(  0,1,k = ) can be measured as fuzzy value. We substitute 
 ( )x k  for x(k) in the subsection 2.1 to denote the fuzzy per-

formance level [12, 17, 33] of the component at time k , and 
 ix  for ix  in the subsection 2.1 to denote the fuzzy perform-

ance level associated with the state i , 1,2, ,i m=  . The fuzzy 

performance level  ( )x k  takes values from   1 2{ , , , }mx x x . Be-

cause the ix   value is presented as fuzzy number in the model, 

we have ( )iix x
α

∈  with 0ix ≥ , where ( )ix
α

 is -cutα of the 

fuzzy number  ix  for 0 1α≤ ≤ .

One-step transition probability of the component from(3)	  one 
state to another state (that transitions can only occur between 
adjacent states) can be measured as fuzzy value. We substi-
tute ijP  for ijP  in Eq. (1) to denote the fuzzy one-step tran-
sition probability [2, 23, 26] from the component state i  
to the component state j  ( 1,  ,  1j i i i= − + ). The , 1i iq +
( 1,2, , 1)i m= −  and , 1i ip −  ( 2,3, , )i m=   values are fuzzy 
values and we substitute  , 1i iq +  for , 1i iq +  and  , 1i ip −  for , 1i ip −  
in Eq. (1). ijP  can be determined by the fuzzy values  , 1i iq +  
and  , 1i ip −  based on Eq. (1). Because the , 1i iq +  and , 1i ip −  
values are presented as fuzzy numbers in the model, we put 
the following restrictions on the  , 1i iq +  and 

, 1i ip −  values: 
( ), 1 , 1i i i iq q

α+ +∈  and ( ), 1 , 1i i i ip p
α− −∈  with , 10 1i iq +≤ ≤ , 

, 10 1i ip −≤ ≤  and , 1 , 10 1i i i iq p+ −≤ + ≤ , where ( ), 1i iq
α+  and 

( ), 1i ip
α−  are -cutsα  of the fuzzy numbers  , 1i iq +  and  , 1i ip −  

for 0 1α≤ ≤ , respectively.

2.2.2.	 Fuzzy Markov model

According to definition and assumptions of the fuzzy discrete 
time repairable multi-state component, the fuzzy performance level 
 ( )x k  ( 0,1,k =  ) forms a discrete-state discrete-time fuzzy Markov 

chain [2, 23, 26] with the following fuzzy one-step transition prob-
ability matrix:


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where the fuzzy uncertainty is on the state transition probabilities of 
the component from the state i  to the state 1i +  and from the state i  
to the state 1i − , but not on the fact that every row must add to 1. The 
fuzzy values  , 1i iq +  and  , 1i ip −  are restricted by ( ), 1 , 1i i i iq q

α+ +∈  and 
( ), 1 , 1i i i ip p

α− −∈  with , 1 , 10 1i i i iq p+ −≤ + ≤ .
With the fuzzy state transition probabilities, the state probability 

of the component in the state i  at time k  must also be a fuzzy value 
denoted as  ( )iP k . The dynamic fuzzy state probability  ( )iP k  can be 
determined by:

	  ( )  ( )  ( )  ( )  ( )  ( ) ,1 2 1 2, , , 0 0 , , 0
k

m mP k P k P k P P P   = ⋅    P 

   (6)

The matrix equation (6) can be written as:

	   0
k

k = ⋅P P P 	 (7)

where   ( )  ( )  ( )1 2, , ,k mP k P k P k =  P   and  [ ],0 1 0, ,0=P  . By 
solving the matrix equations (6) or (7), the dynamic fuzzy state prob-
ability  ( )iP k  at time k  can be given as function of fuzzy variables 


, 1( 1,2, , 1)i iq i m+ = −  and   , 1( 2,3, , )i ip i m− =  , and then  ( )iP k  can 

be written as        ( )1,2 2,3 1, 2,1 3,2 , 1( ) ; , , , ; , , ,i i m m m mP k P k q q q p p p− −=   . 

If the fuzzy state transition probabilities are represented by fuzzy vec-
tors    { }1,2 2,3 1,, , , m mq q q −=q   and    { }2,1 3,2 , 1, , , m mp p p −=p  , we 

have    ( )( ) , ,i iP k P k= q p .
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Let ηqi i


, +1
 and η pi i



, −1
 denote the membership functions of  , 1i iq +  

and  , 1i ip − , respectively. The -cutsα  of  , 1i iq +  and  , 1i ip −  can be de-
termined as crisp intervals:

q q qi i q Q
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where , 1i iQ +  and , 1i iP −  are the crisp universal sets of the state tran-
sition probabilities for the component from the state i  to the state 

1i +  and from the state i  to the state 1i − , respectively. Accord-
ing to parametric programming technique [20, 33], the lower bound 

P ki
L( )( )α  and upper bound P ki

U( )( )α  of the α -cut  of P ki  , ,q p( )  can 
be computed as:

P k P k ki
L

i( )( ) ( ) = ≤ ≤( )α
α=     

                

min , , , , ,q p 1 2 0 1

   s.t.   

         

q q q i mi i
L

i i i i
U

, , , , , , ,+ + +( ) ≤ ≤( ) = −1 1 1 1 2 1
α α



                

    

p p p i mi i
L

i i i i
U

, , , , , , ,− − −( ) ≤ ≤( ) =1 1 1 2 3
α α



                        0 1 2 3 11 1≤ + ≤ = −+ −q p i mi i i i, , , , , ,

   (10)

and:

P k P k ki
U

i( )( ) ( ) = ≤ ≤( )α
α=     

                

max , , , , ,q p 1 2 0 1

   s.t.   

         

q q q i mi i
L

i i i i
U

, , , , , , ,+ + +( ) ≤ ≤( ) = −1 1 1 1 2 1
α α



                

    

p p p i mi i
L

i i i i
U

, , , , , , ,− − −( ) ≤ ≤( ) =1 1 1 2 3
α α



                        0 1 2 3 11 1≤ + ≤ = −+ −q p i mi i i i, , , , , ,

   (11)

where { }1,2 2,3 1,, , , m mq q q −=q   and { }2,1 3,2 , 1, , , m mp p p −=p   are 

crisp state transition probability vectors. Then α -cut  of  ( )iP k  can be 

denoted as P k P k P ki i
L

i
U

 ( ) ,( ) = ( )( ) ( )( )



α α α .

3. Fuzzy Lz-transform

Consider the discrete-state discrete-time fuzzy Markov chain 

 ( )( 0,1, )x k k = 
 in subsection 2.2, the fuzzy Markov chain can be 

completely determined by set of possible fuzzy performance levels 

x  



= { }x x xm1 2, , , , fuzzy transition probability matrix P  and the ini-

tial state probability distribution 0P . The discrete-state discrete-time 
fuzzy Markov chain can be notated by using triplet: 

	  ( )   0= , ,x k x P P 	 (12)

Based on the fuzzy universal generating function [12,33] and the 

zL -transform of a discrete-state continuous-time Markov process 

[28,29,31], fuzzy zL -transform of a discrete-state discrete-time fuzzy 

Markov chain  ( )   0= , ,x k x P P  is defined as:

	 L x P kZ i
i

m
k u k xi

    

( ){ } ( ) ( )= ⋅
=
∑z z, ,P0

1
= 	 (13)

where  ( )iP k  is the fuzzy state probability that the fuzzy Markov 

chain is in the state i  at time ( )0,1,k k =   for any given initial state 

probability distribution 0P , and z  is a complex variable in the gen-

eral case. Under given initial state probability distribution 0P , the 
discrete-state discrete-time fuzzy Markov chain has one and only one 

fuzzy zL -transform.

For example, consider a simple component which has only two 

different fuzzy performance levels  1x χ=  and  2 0x = . It means that 
1x  is the performance level associated with nominal working state 

and  2x  is the performance level associated with complete failure 
state. The working time and the repair time of the component have 

geometric distributions with fuzzy mean values 1 / q  and 1 / p . The 

fuzzy Markov chain x k ( )∈{ }χ , 0  ( 0,1, )k =   for the considered ex-

ample is denoted by  ( )   0= , ,x k x P P , where x , P  and 0P  are given 
respectively as:

Set of the possible fuzzy performance levels •	
x   = { } = { }x x1 2, χ , 0  ;

Fuzzy transition probability matrix •	 

 

 

1

1

q q

p p

 −
=  

−  
P ;

Initial state probability distribution •	 0 [1,0]=P .

The fuzzy dynamic state probabilities of the fuzzy Markov chain 

 ( )x k  at time ( 0,1, )k k =   can be calculated by:

	  ( )  ( ) [ ]
 

 

,1 2
1

, 1 0
1

k
q q

P k P k
p p

 −
  = ⋅    −  

	 (14)

Solving (14), we can obtain:

	  ( )
   ( )

 

1
1

k
p q q p

P k
q p

+ − −
=

+
,  ( )

   ( )
 

2
1

k
q q q p

P k
q p

− − −
=

+
 

For the component with a number of fuzzy performance levels, 
the forms of closed-form solutions for the dynamic fuzzy state proba-

bilities  ( )iP k ( 1,2, , )i m=   are very complicated. A numerical tech-
nique can be used to obtain these solutions.

The fuzzy zL -transform of the fuzzy Markov chain for the 

binary component can be obtained as follows:
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L x P kZ i
i

k u k

p

xi
    

( ){ } ( ) ( )

=

= ⋅
=
∑z z, ,P0

1

2
=

                 
   

 

   

 



+ − −( )
+

+
− − −( )

+
⋅ ⋅

q q p

q p

q q q p

q p

k k
1 1 0z zχ

Assume that the α-cuts of q  and p  are q qL U( ) ( )



α α,  and 

p pL U( ) ( )



α α,  respectively, we can obtain the α-cuts of the fuzzy 

dynamic state probabilities 1( )P k  and 2( )P k  for the fuzzy Markov 
chain according to (10) and (11).

4. Fuzzy dynamic availability assessment for DTRMSS

The fuzzy dynamic availability assessment method for the 
DTRMSS under minor failures and repairs, which is based on using 
the proposed fuzzy zL -transform. It is assumed that the behavior of 
any component  ( {1,2, , })l l n∈   in the DTRMSS with n  compo-
nents can be characterized by the discrete-state discrete-time fuzzy 
Markov chain  ( )lG k , which has lm  different states that correspond 
to different fuzzy performance levels represented by the ordered fuzzy 

set g  





l l l lmg g g
l

= { }1 2, , , , where 
llig  is the fuzzy performance lev-

el of component l  in its state  ( 1,2, , )l l li i m=  .

Let   ( )  ( )  ( )1 2, , , llk l l lmP k P k P k =  P 
 denote the fuzzy dynam-

ic state probabilities associated with different states for the compo-
nent l  at time k , that is:

	 P k G k g i m l nli l li l ll l
  

 ( ) Pr , , , , , , , ,= ( ) ={ } = ∈{ } 1 2 1 2      (15)

The fuzzy dynamic state probabilities  ( )lliP k  for each of lm  
states can be obtained by writing and solving a corresponding fuzzy 

matrix equation (7) with the given initial conditions  0lP . 

Based on the fuzzy zL -transform method, each discrete-state 

discrete-time fuzzy Markov chain  ( )lG k  associated with the fuzzy 

output Markov process of the component l { }( )1,2, ,l n∈ 
 should 

be expressed as:

	 L k P kZ li
i

m
G u k l nl l l

l

gl
lil    





( ) , , , , , ,{ } ( ) ( ) == = ⋅
=
∑z zP 0

1
1 2   (16)

For the entire DTRMSS, its states are separated through its fuzzy 
performance levels, which are unambiguously determined by the 
fuzzy performance levels of components and its structure. Assume 

that the DTRMSS has M  different states and   jg  is the fuzzy per-

formance level of the system in state  ( 1,2, , )j j M=  . Let  ( )G k
denote the fuzzy performance level of the DTRMSS at time k , then 

 ( )G k  is a fuzzy stochastic process that takes fuzzy values from the 

set G  



= g g g M1 2, , ,( ) . Based on the fuzzy performance stochastic 

processes  ( )lG k { }( )1,2, ,l n∈ 
of all components at time k  and 

the system structure, the fuzzy stochastic process  ( )G k  can be given 
by:

	 G k G k G k G kn  



( ) ( ) ( ) ( )( )=φ 1 2, , , 	 (17)

where φ( )  is the system structure function. Let  ( )jP k  denote the 
fuzzy dynamic state probability of the DTRMSS in state j  at time k  , 
then the fuzzy dynamic state probabilities associated with different 
states for the system at time k  can be denoted by:

	   ( )  ( )  ( )1 2( ) , , , Mk P k P k P k =  P  	 (18)

Based on the property of zL -transform [28] and the general fuzzy 

composition operator Ωφ  [12], we can find the fuzzy zL -transform 

of the discrete-state discrete-time fuzzy stochastic process  ( )G k , 
which is a fuzzy single-valued function of n  independent discrete-

state discrete-time fuzzy Markov chains  ( )lG k { }( )1,2, ,l n∈ 
. 

Appling the fuzzy composition operator Ωφ  to all individual fuzzy 

zL  -transforms L kZ Gl  ( ){ } l∈{ }( )1 2, , , n  over any discrete time 

k  k =( )0 1, , , we have:

L L L LZ Z Z ZG k G k G k G kn      



 ( ){ } ( )  ( )  ( ) {= Ωφ 1 2, , , }}   (19)

According to (16) and (19), the fuzzy zL -transform of the dis-

crete-state discrete-time fuzzy stochastic process  ( )G k  can be writ-

ten as:

LZ G k u k u k u k n      



 ( ){ } ( ) ( ) ( ){ }= Ωφ z z z, , , , , , , , ,P P P10 20 0

                  = ( ) ( )
= =
∑ ∑⋅Ω  



φ P Pi
i

m
i

i

m
k kg i1

1
2

1
1

1

1
11

2
2

2
z , ⋅⋅ ⋅( )











=
∑z z

g gi
n

n

n
n inPni

i

m
k

 





2 2

1
, ,  

                   = ( )










( )
=
∏

=






 





P kli
g g g

l

n

n

n
l

i i n in

i

m
z
φ 11 2 2

11

, , ,
∑∑∑∑

∑

==

=
= ( ) ⋅

i

m

i

m

j
j

M
P k g j

2

2

11

1

1

1

                 



z
 (20)

where  ( )  ( )
1

l

n
j li

l
P k P k

=
=∏  and g g g gj i i n in

  



= ( )φ 1 21 2
, , ,  . The low-

er and upper bounds of the α-cuts of the fuzzy dynamic state probabil-

ity  ( )jP k  and the fuzzy performance level  jg  of the DTRMSS in 
state j  at time k  can be determined according to parametric pro-
gramming technique.

The dynamic fuzzy availability of the entire DTRMSS for the 

fuzzy consumer demand ω  at time ( ) 0,1,k k =   is defined as:

	 A k P gP kj
j

M
j

    ω ω,( ) ( ) ⋅ ≥( )
=
∑=

1
	 (21)

where P g j
 ≥( )ω  denotes the possibility of  

jg ω≥ . Because 

the  jg  and ω  values are fuzzy numbers, we give a method for 
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P g j
 ≥( )ω  based on method of interval number ranking in accord-

ance with possibility [11] and the α-cuts of  jg  and ω . We define the 

possibility of g j
 ≥ω  as:

p g
g g g

j

j
U

j
L U L U

j
 ≥( ) =

( ) − ( ) + ( ) − ( ) − ( ) − ( )
ω

ω ω ω

α

α α α α α α
max , max ,0 0

LL

j
U

j
L U Lg g

{ }







( ) − ( ) + ( ) − ( )
α α α αω ω

(22)

where g j
L( )α  and g j

U( )α  are the lower bound and upper bound of 

the fuzzy performance level α-cut of  jg , and ω α( )L  and ω α( )U  are 
the lower bound and upper bound of the α-cut of the fuzzy consumer 
demand ω , respectively.

In order to find the α-cut of the dynamic fuzzy availability (21), 
the following procedures can be adopted.

For each repairable multi-state component (1)	 l  l∈{ }( )1 2, , , n  

under minor failures and repairs, the α-cuts 0 1≤ ≤( )α  of the 

fuzzy state transition probabilities  , 1l li iq +  ( 1,2, , 1)l li m= −  

from the state li  to the state 1li + ,  , 1l li ip − ( 2,3, , )l li m=   

from the state li  to the state 1li − , and the fuzzy performance 

level 
llig  in state  ( 1,2, , )l l li i m=   can be determined ac-

cording to individual membership functions as follows:

	 q q qi i i i
L

i i
U

l l l l l l


, , ,,+ + +( ) ( ) ( )



1 1 1α α α

= 	 (23)

	 p p pi i i i
L

i i
U

l l l l l l


, , ,,− − −( ) = ( ) ( )



1 1 1α α α

	 (24)

	 g g gli li
L

li
U

l l l
( ) = ( ) ( )



α α α

, 	 (25)

Based on the proposed fuzzy Markov model in the subsection (2)	

2.2.2, the fuzzy dynamic state probabilities  ( )lliP k  (

 i m nl l= ∈{ }1 2 1 2, , , , , , , l ) for each component at time k  
can be determined. According to the general fuzzy composi-
tion operator Ωφ  [12] and the individual fuzzy zL -transforms 

of all components at time k , the fuzzy zL -transform 
LZ G k  ( ){ }  of the entire DTRMSS can be obtained. 

According to parametric programming technique, the lower (3)	

bound P kj
L( )( )α  and upper bound P kj

U( )( )α  of the α-cut of 

the fuzzy dynamic state probability  ( )jP k of the DTRMSS in 

state j  at time k  can be computed as:

P k P k P k kj
L

j li
l

n

l( )( ) = ( )= ( ) = ≤ ≤( )
=
∏α

α       

     

min , , ,
1

1 2 0 1

                 s.t.    q q qi i
L

i i i il l l l l l, , ,+ + +( ) ≤ ≤( )1 1 1α α

UU
l l

i i
L

i m

p
l l

, , , ,

,

= −

( ) ≤−

1 2 1

1



                             
α

pp p i mi i i i
U

l ll l l l, , , , , ,− −≤( ) =1 1 2 3
α



                                 

               

0 1 2 3 11 1≤ + ≤ = −+ −q p i mi i i i ll l l l, , , , , ,

                l n=1 2, , ,  
(26)

and:

P k P k P k kj
U

j li
l

n

l( )( ) = ( )= ( ) = ≤ ≤( )
=
∏α

α      

      

max , , ,
1

1 2 0 1

                s.t. q q q ii i
L

i i i i
U

ll l l l l l, , , ,+ + +( ) ≤ ≤( ) =1 1 1α α
11 2 1

1

, , ,

, ,

 m

p p

l

i i
L

i il l l l

−

( ) ≤− −                           
α 11 1 2 3

0

≤( ) =

≤

−p i m

q

i i
U

l ll l, , , , ,
α



                            ii i i i ll l l l
p i m, , , , , ,+ −+ ≤ = −1 1 1 2 3 1  

                        



     l n=1 2, , ,

(27)

where ( )lliP k  is the function of , 1l li iq +  and , 1l li ip − . 

The lower bound g j
L( )α  and upper bound g j

U( )α  of the α-cut of 

the fuzzy performance level  jg  of the DTRMSS in state j  can be 
computed as:

	

g g g g gj
L

j i i n in( ) = = ( ) ≤ ≤( )
α

φ α      

            

 min , , ,1 21 2
0 1

    s.t.   

              

g g g i mli
L

li li
U

l ll l l( ) ≤ ≤( ) =
α α

, , , ,1 2

          l n=1 2, , ,

     (28)

and:

	

g g g g gj
U

j i i n in( ) = = ( ) ≤ ≤( )
α

φ α      

            

 max , , ,1 21 2
0 1

    s.t.   

              

g g g i mli
L

li li
U

l ll l l( ) ≤ ≤( ) =
α α

, , , ,1 2

          l n=1 2, , ,

     (29)

Based on the defined possibility of (4)	  

jg ω≥ in Eq. (22) and 

the defined availability A k ω,( )  in Eq. (21), the lower bound 

A k Lω
α

,( )( )  and upper bound A k Uω
α

,( )( )  of the α-cut of the 

dynamic system fuzzy availability A k ω,( )  for the fuzzy con-

sumer demand ω  at time k  can be computed as:
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A k P k P g kL
j

j

M

jω ω α
α α

, , , ,( )( ) = ( ) ⋅ ≥( ) = ≤ ≤( )
=
∑min      

  

1
1 2 0 1 



                     s.t.   P k P k P k jj
L

j j
U( )( ) ≤ ( ) ≤ ( )( ) =

α α
, ,1 2,, , M

P kj
j

M
            ( ) =

=
∑

1
1

 
(30)

and:

A k P k P g kU
j

j

M

jω ω α
α α

, , , ,( )( ) = ( ) ⋅ ≥( ) = ≤ ≤( )
=
∑max      

  

1
1 2 0 1 



                     s.t.   P k P k P k jj
L

j j
U( )( ) ≤ ( ) ≤ ( )( ) =

α α
, ,1 2,, , M

P kj
j

M
            ( ) =

=
∑

1
1

 
(31)

5. Numerical example

Consider a repairable multi-state flow transmission system with 
three subsystems (LSS subsystem, HSS subsystem and CP subsys-
tem), where the structure of the system and the state-transition dia-
grams for its components are presented in Fig. 1. It can be seen from 
Fig. 1 that only components of the LSS subsystem have two states, 
whereas components of the HSS subsystem and components of the CP 
subsystem are multi-state components. 

The fuzzy state transition probabilities and fuzzy performance 
level for each component are treated as trapezoidal fuzzy numbers. 
To reduce the computational complexity, the following operations of 
the trapezoidal fuzzy numbers are used to determine the fuzzy per-
formance levels of the each parallel subsystem and the entire series-
parallel system.

Assume that a a a a a = ( )1 2 3 4, , ,  and b b b b b = ( )1 2 3 4, , ,  are two 
trapezoidal fuzzy numbers, then:

	 a b a b a b a b a b + = + + + +( )1 1 2 2 3 3 4 4, , , 	 (32)

min , min , ,min , ,min , ,min ,a b a b a b a b a b { } = ( ){ } { } { } { }1 1 2 2 3 3 4 4  (33)

The LSS subsystem consists of two different components con-
nected in parallel, and their respective performance is allowed in only 
one of two principal states: perfect performance level (state 1) and 
zero performance level (state 2). The fuzzy state transition probabili-
ties of each component from state 1 to state 2 are 
 ( )1 0.020,0.025,0.030,0.035

LSSq =  and  ( )2 0.05,0.06,0.07,0.08
LSSq = , 

respectively. The fuzzy state transition probabilities of each compo-

nent from state 2 to state 1 are  ( )1 0.30,0.35,0.40,0.45
LSSp =  and 

 ( )2 0.40,0.50,0.60,0.70
LSSp = , respectively. The fuzzy performance 

levels of the first component are  ( )11 4,5,6,7
LSSg = (perfect perform-

ance) and 12 0
LSSg =  (zero performance). The fuzzy performance lev-

els of the second component are  ( )21 8,10,12,14
LSSg =  (perfect per-

formance) and 22 0
LSSg =  (zero performance). 

The HSS subsystem has two identical parallel components with 
three different states:  perfect operation state (corresponding to the 

fuzzy performance level  ( )1 18,20,22,24
HSS
lg = ), partial operation 

state (corresponding to the fuzzy performance level 
 ( )2 10,12,14,16

HSS
lg =  ), and complete failure state (corresponding to 

the performance level  3 0
HSS
lg = ), 1,2l = . The fuzzy state transition 

probabilities of the two components are 
  ( )1 3 0.04,0.05,0.06,0.07

HSS HSSq q= =  ,   ( )2 4 0.06,0.07,0.08,0.09
HSS HSSq q= =  , 

  ( )1 3 0.4,0.5,0.6,0.7
HSS HSSp p= =  and   ( )2 4 0.5,0.6,0.7,0.8

HSS HSSp p= =  .

The CP subsystem has only one component with four states: two 
perfect operation states (corresponding to the fuzzy performance level 
  ( )1 2 14,16,18,20

CP CPg g= = ), a partial operation state (corresponding 

to the fuzzy performance level  ( )3 7,8,9,10
CPg = ) and a complete 

failure state (corresponding to the performance level 4 0
CPg = ). The 

fuzzy state transition probabilities of the component are 


1 (0.03,0.04,0.05,0.06)
CPq = ,  ( )2 0.05,0.06,0.07,0.08

CPq =  , 

 ( )3 0.09,0.1,0.11,0.12
CPq = ,  ( )1 0.2,0.3,0.4,0.5

CPp = , 

 ( )2 0.4,0.5,0.6,0.7
CPp =  and  ( )3 0.5,0.6,0.7,0.8

CPp = . 

According to the method and procedures provided in Section 4, 
we can calculate the α-cuts of the dynamic fuzzy availability for the 
system with different fuzzy consumer demand levels: 
ω1 12 15 18 21= , , ,( )  and ω2 8 10 12 14= , , ,( ) .

Based on different fuzzy consumer demand levels ω1  and ω2 , 
Tables 1-2 presents the α-cuts of the dynamic fuzzy availability at 11 

distinct α values: 0,0.1, ,1.0  for the mission time k = 2, 4, 8, 12. 
Suppose that the reliability standard of the repairable multi-state flow 
transmission system at the confidence level α =0.9α  for the mission 

time 2k =  requires the system performance must satisfy a fuzzy con-
sumer demand level (ω2 8 10 12 14= , , ,( ) ) of the system availability, 

which is set as 0.4. It can be seen from Table 2 that the result of the 

availability assessment ( [ ]0.4026,0.6353 ) can satisfy the availability 
requirement of the repairable multi-state flow transmission system, 
which ensures the system relatively reliable working. In the same 
manner, one can explain the rest of the results shown in Tables 1-2. 

Figs. 2-3 illustrate the membership functions of the dynamic 
fuzzy availabilities  ( )1,A kω  and  ( )2,A kω  when k = 2, 4, 8, 12. 
The dynamic fuzzy availability curves of the system under different 
fuzzy consumer demand levels, shown in Figs. 4-5, represent the vari-
ation in availability of the system with time at the confidence levels  
α=0, α  0.5α =  and α=1. It can be seen from Figs. 4-5 that the system 
dynamic fuzzy availability decreases as time k  increases, and the 
decrease is very rapid when 2k <  and tends vanish when k  becomes 
large. This means that the system availability has relative stability in 
a certain range when 2k ≥ .

These results in the numerical example will be beneficial for sys-
tem  analyst  or  design engineer. Based on these results, the system 
manager can carry out design modifications and make maintenance 
(repair and replacement actions) decision for the discrete time repair-
able multi-state systems under imprecise and fuzzy environment.
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6. Conclusions

The dynamic fuzzy availability assessment technique for a 
DTRMSS under minor failures and repairs is investigated in the pa-

per. The technique is based on the Fuzzy zL -transform of the dis-
crete-state discrete-time Markov process, the α-cut approach and the 
parametric programming algorithm. A discrete-state discrete-time 
fuzzy Markov model is proposed to analyze the dynamic fuzzy state 
probability for each multi-state component at any discrete time. The 
analytical procedure is provided to calculate the α-cut of the dynamic 
fuzzy availability of the system. A flow transmission system with five 
components is considered, and it illustrates the performance of the 
proposed technique. This technique is suitable and effective for the 
dynamic fuzzy availability assessment of the DTRMSS with fuzzy 

uncertainty. In future, we will concern the fuzzy zL -transform of the 

discrete-state discrete-time Markov process and its application to the 
fuzzy multi-state system reliability, and the dynamic fuzzy availabil-
ity optimization design for the DTRMSS. 
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Table 2.	 The α-cuts of the fuzzy availability 2( , )A kω   at 11 distinct α values when k = 2,4,8,12

A k A kL Uω ω
α α2 2, , ,( )( ) ( )( )





α A AL Uω ω
α α2 22 2, , ,( )( ) ( )( )





A AL Uω ω
α α2 24 4, , ,( )( ) ( )( )





A AL Uω ω
α α2 28 8, , ,( )( ) ( )( )





A AL Uω ω
α α2 212 12, , ,( )( ) ( )( )





0.0 [0.2662,0.8416] [0.2538,0.8343] [0.2495,0.8341] [0.2488,0.8342]

0.1 [0.2801,0.8173] [0.2671,0.8099] [0.2633,0.8093] [0.2593,0.8095]

0.2 [0.2943,0.7934] [0.2815,0.7857] [0.2773,0.7852] [0.2735,0.7853]

0.3 [0.3087,0.7697] [0.2963,0.7621] [0.2919,0.7613] [0.2881,0.7614]

0.4 [0.3237,0.7466] [0.3105,0.7388] [0.3068,0.7377] [0.3029,0.7378]

0.5 [0.3390,0.7234] [0.3254,0.7146] [0.3226,0.7146] [0.3182,0.7147]

0.6 [0.3546,0.7018] [0.3412,0.6919] [0.3383,0.6918] [0.3338,0.6918]

0.7 [0.3707,0.6787] [0.3576,0.6698] [0.3543,0.6694] [0.3498,0.6693]

0.8 [0.3870,0.6576] [0.3734,0.6479] [0.3708,0.6471] [0.3662,0.6472]

0.9 [0.4026,0.6353] [0.3906,0.6265] [0.3875,0.6254] [0.3828,0.6256]

1.0 [0.4204,0.6145] [0.4073,0.6043] [0.4047,0.6040] [0.4000,0.6042]

Table 1.	 The α-cuts of the fuzzy availability A k ω1 ,( )  at 11 distinct α values when k =2,4,8,12

A k A kL Uω ω
α α1 1, , ,( )( ) ( )( )





α A AL Uω ω
α α1 12 2, , ,( )( ) ( )( )





A AL Uω ω
α α1 14 4, , ,( )( ) ( )( )





A AL Uω ω
α α1 18 8, , ,( )( ) ( )( )





A AL Uω ω
α α1 112 12, , ,( )( ) ( )( )





0.0 [0.2521,0.8005] [0.2342,0.7823] [0.2260,0.7783] [0.2245,0.7781]

0.1 [0.2654,0.7771] [0.2468,0.7589] [0.2390,0.7546] [0.2377,0.7544]

0.2 [0.2790,0.7542] [0.2604,0.7358] [0.2523,0.7313] [0.2512,0.7311]

0.3 [0.2929,0.7314] [0.2744,0.7132] [0.2661,0.7083] [0.2651,0.7081]

0.4 [0.3073,0.7093] [0.2879,0.6909] [0.2802,0.6851] [0.2793,0.6855]

0.5 [0.3220,0.6871] [0.3021,0.6677] [0.2952,0.6635] [0.2939,0.6633]

0.6 [0.3370,0.6663] [0.3171,0.6461] [0.3101,0.6417] [0.3089,0.6413]

0.7 [0.3524,0.6442] [0.3326,0.6250] [0.3253,0.6202] [0.3242,0.6198]

0.8 [0.3681,0.6240] [0.3477,0.6041] [0.3410,0.5989] [0.3399,0.5986]

0.9 [0.3831,0.6024] [0.3641,0.5837] [0.3569,0.5782] [0.3559,0.5779]

1.0 [0.4002,0.5827] [0.3800,0.5626] [0.3733,0.5577] [0.3724,0.5574]
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Fig. 1. Structure and component state-transition diagrams of the repairable multi-state flow transmission system

Fig. 2. The membership functions of the fuzzy availability A k ω1 ,( )  at k=2,4,8,12

a) k=2 b) k=4

c) k=8 d) k=12
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Fig. 4. The fuzzy availability A k ω1 ,( )  with α=0.0, 0.5, 1.0

Fig. 3. The membership functions of the fuzzy availability 2( , )A kω   at k=2,4,8,12

Fig. 5. The fuzzy availability 2( , )A kω   with  α=0.0, 0.5, 1.0

a) k=2 b) k=4

c) k=8 d) k=12
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