PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The influence of biomaterial in the binder composition on the quality of reclaim from furan no-bake sands

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Wpływ biomateriału w spoiwie na jakość regeneratu otrzymywanego z samoutwardzalnych mas furanowych
Języki publikacji
EN
Abstrakty
EN
The aim of this paper is to determine the influence of biomaterial in the binder composition on the quality of reclaim from furan no-bake sands. The biomaterial is introduced into the moulding sand in order to accelerate the biodegradation of post-regeneration dust and thus to reduce the amount of harmful waste from foundries in landfills. This addition, however, can’t deteriorate the technological properties of the moulding sand, including its ability to mechanical regeneration. Chemically bonded moulding sands are characterized by high ability to mechanical regeneration, which reduces the consumption of the raw material and costs related to their transport and storage. A side effect of the regeneration process is the formation of a large amount of post-regeneration dusts. According to the tendencies observed in recent years, moulding processes must meet high requirements connected to environmental protection including problems related to the disposal of generated wastes. A partial replacement of synthetic binding materials with biomaterials may be one of scientific research directions on the production of innovative foundry moulding and core sands. The conducted regeneration tests presented in this paper initially proved that biomaterial slightly decreases the quality of reclaim from moulding sand with its addition. However, its ability to regeneration increases with time of the process. In previous research authors tested biodegradability of the dust remaining after the regeneration process. The tests proved that moulding sand with biomaterial added at the stage of the production process is characterized by about three times better biodegradability than the same moulding sand without additive.
PL
Tematem niniejszej pracy jest określenie wpływu dodatku biomateriału (PCL) do spoiwa na jakość regeneratu z samoutwardzalnych mas furanowych. Zadaniem biomateriału jest przyspieszenie biodegradacji pyłów poregeneracyjnych i tym samym doprowadzenie do zredukowania na składowiskach ilości szkodliwych odpadów pochodzących z odlewni. Dodatek ten nie może jednak pogarszać właściwości technologicznych masy, w tym jej zdolności do regeneracji mechanicznej. Autorzy przeprowadzili proces regeneracji mechanicznej, a następnie badaniom poddali regeneraty z mas formierskich utwardzanych chemicznie przeznaczonych do produkcji wielkogabarytowych odlewów żeliwnych. Odlewy żeliwne znajdują szerokie zastosowanie w motoryzacji, transporcie morskim i kolejowym, w energetyce, rolnictwie oraz budownictwie. Produkcja odlewu wielkogabarytowego o złożonym kształcie, charakteryzującego się wysoką jakością przy zachowaniu wymaganych właściwości użytkowych, obejmuje wiele etapów procesu produkcyjnego. Jednym z nich jest odpowiedni dobór technologii mas formierskich i rdzeniowych. Masy formierskie i rdzeniowe wykorzystywane są do produkcji odlewów w około 80% wszystkich odlewni. Największą ilość odpadów wytwarzanych w odlewniach stanowi zużyta masa formierska / rdzeniowa i sięga ona czasem nawet 90%. Przyjmuje się, że średnio z 1 Mg odlewów powstaje 0,6-1,0 Mg zużytej masy [4, 5], a według [2] do wyprodukowania 1 kg odlewu potrzeba około 4 kg masy formierskiej. Światowa produkcja odlewów wynosi około 100 mln Mg [2, 6], w tym odlewy żeliwne w masach formierskich utwardzanych chemicznie w ilości 30 mln Mg, co przy założeniu stopnia regeneracji na poziomie 40-50% daje 15-18 mln Mg zużytego piasku [4]. Prezentowany w pracy temat poświęcony jest materiałom pochodzącym z procesu odlewania do form piaskowych wykonanych z piasku kwarcowego ze spoiwem organicznym na bazie żywicy modyfikowanej alkoholem furfurylowym, utwardzanej mieszaniną kwasów zawierających siarkę.
Twórcy
  • AGH University of Science and Technology, Faculty of Foundry Engineering, Cracow, Poland
  • Łukasiewicz Research Network - Krakow Institute of Technology, Cracow, Poland
  • AGH University of Science and Technology, Faculty of Foundry Engineering, Cracow, Poland
  • Łukasiewicz Research Network - Krakow Institute of Technology, Cracow, Poland
Bibliografia
  • [1] M. Bożym, “Alternative directions for the use of foundry waste, with particular emphasis on energy management”, Scientific Papers of the Institute of Mineral and Energy Economy of the Polish Academy of Sciences, 2018, no. 105, pp. 197-212; DOI: 10.24425/124358 (in Polish).
  • [2] R. Dańko, J. Jezierski, M. Holtzer, “Physical and chemical characteristics of after-reclamation dust from used sand moulds”, Arabian Journal of Geosciences, 2016, vol. 9, art. ID 153; DOI: 10.1007/s12517-015-2162-3.
  • [3] M. Holtzer, Best Available Techniques (BAT) for the foundry industry. Ministry of the Environment, September 2005 (in Polish).
  • [4] M. Holtzer, R. Dańko, A. Kmita, “Influence of a Reclaimed Sand Addition to Moulding Sand with Furan Resin on Its Impact on the Environment”, Water, Air, & Soil Pollution, 2016, vol. 227, art. ID 16; DOI: 10.1007/s11270-015-2707-9.
  • [5] W. Łatas, R. Dańko, P. Czapla, “Application of 3-D Drucker-Prager Material Model to Determine Optimal Operating Parameters of Centrifugal Regeneration Device”, Materials, 2020, vol. 13, no. 9; DOI: 10.3390/ma13092134.
  • [6] J. Sobczak, E. Balcer, A. Kryczek, “The situation of foundry in the world, Europe and Poland”, presented at National Foundry Day, 13 December 2013, Kraków, Poland, 2013 (in Polish).
  • [7] S. Wojciechowski, R. Talar, P. Zawadzki, M. Wieczorowski, “Evaluation of physical indicators and tool wear during grooving of spheroidal cast iron with a novel WCCo/cBN (BNDCC) inserts”, Wear, 2020, vol. 454-455, art. ID 203301; DOI: 10.1016/j.wear.2020.203301.
  • [8] K. Major-Gabryś, Environmentally friendly foundry moulding and core sands. Katowice-Gliwice, Poland: Archives of Foundry Engineering, 2016 (in Polish).
  • [9] J. Dańko, R. Dańko, M. Łucarz, Processes and devices for reclamation of used moulding sands. Kraków, Poland: Akapit, 2007 (in Polish).
  • [10] W. Dai, “Reclamation Technology & Case Analysis of Waste Foundry Sand”, in Proceedings of the 2015 WFO International Forum on Moulding Materials and Casting Technologies, 25-8 September 2015, Changsha, China. WFO Moulding Materials Commission, Foundry Institution of Chinese Mechanical Engineering Society, Productivity Center of Foundry Industry of China, 2015, pp. 186-191.
  • [11] M. Holtzer, Management of waste and by-products in foundries. Kraków, Poland: University Scientific and Didactic Publishers, AGH, 2001 (in Polish).
  • [12] R. Dańko, M. Holtzer, J. Dańko, “Characteristics of Dust from Mechanical Reclamation of Moulding Sand with Furan Cold-Setting Resins - Impact on Environment”, in Proceedings of the 2015 WFO International Forum on Moulding Materials and Casting Technologies, 25-28 September 2015, Changsha, China. WFO Moulding Materials Commission, Foundry Institution of Chinese Mechanical Engineering Society, Productivity Center of Foundry Industry of China, 2015, pp. 38-46.
  • [13] J. Eastman, “Protein-Based Binder Update: Performance Put to the Test”, Modern Casting, 2000, vol. 90, no. 10, pp. 32-34.
  • [14] D. Kramářová, J. Brandštetr, K. Rusín, P. Henzlová, “Biogenní polymerní materiály jako pojiva slévárenských forem a jader”, Slévárenství, 2003, vol. 60, no. 2-3, pp. 71-73 (in Czech).
  • [15] B. Grabowska, M. Holtzer, R. Dańko, M. Górny, A. Bobrowski, E. Olejnik, “New BioCo Binders Containing Biopolymers for Foundry Industry”, Metalurgija, 2013, vol. 52, no. 1, pp. 47-50.
  • [16] B. Grabowska, M. Szucki, J. Suchy, J.S. Eichholz, K. Hodor, “Thermal degradation behavior of cellulosebased material for gating systems in iron casting production”, Polimery, 2013, vol. 58, no. 1, pp. 39-44.
  • [17] K. Major-Gabryś, A. Grabarczyk, S. Dobosz, J. Jakubski, “New bicomponent binders for foundry moulding sands composed of phenol-furfuryl resin and polycaprolactone”, Metalurgija, 2016, vol. 55, no. 2, pp. 385-387.
  • [18] K. Major-Gabryś, “Biodegradable materials as binders for IVth generation moulding sands”, China Foundry, 2015, vol. 12, no. 5, pp. 375-381.
  • [19] K. Major-Gabryś, “Environmentally friendly foundry moulding and core sands”, Journal of Materials Engineering and Performance, 2019, vol. 28, no. 7, pp. 3905-3911; DOI: 10.1007/s11665-019-03947-x.
  • [20] E.J. Choi, J.K. Park, “Study on biodegradability of PCL/SAN blend using composting method”, Polymer Degradation and Stability, 1996, vol. 52, no. 3, pp. 321-326; DOI: 10.1016/0141-3910(96)00032-8.
  • [21] G. Scott, “Environmentally degradable polyolefins: When, why and how”, Expert Group Meeting on Environmentally Degradable Plastics, Present Status and Perspectives, Trieste: ICS-UNIDO, 2001, pp. 37-48.
  • [22] G. Scott, “Green Polymers”, Polymer Degradation and Stability, 2000, vol. 68, no. 1, pp. 1-7; DOI: 10.1016/S0141-3910(99)00182-2.
  • [23] D.M. Wiles, G. Scott, “Polyolefins with Controlled Environmental Biodegradability”, Polymer Degradation and Stability, 2006, vol. 91, no. 7, pp. 1581-1592; DOI: 10.1016/j.polymdegradstab.2005.09.010.
  • [24] A.A. Shah, F. Hasan, A. Hameed, S. Ahmed, “Biological Degradation of Plastics: A Comprehensive Review”, Biotechnology Advances, 2008, vol. 26, no. 3, pp. 246-265; DOI: 10.1016/j.biotechadv.2007.12.005.
  • [25] A. Iwamoto, Y. Tokiwa, “Enzymatic degradation of plastics containing polycaprolactone”, Polymer Degradation and Stability, 1994, vol. 45, no. 2, pp. 205-213; DOI: 10.1016/0141-3910(94)90138-4.
  • [26] K. Major-Gabryś, M. Hosadyna-Kondracka, I. Stachurek, “Determination of mass loss in samples of postregeneration dust from moulding sands with and without PCL subjected to biodegradation processes in a water environment”, Journal of Applied Materials Engineering, 2020, vol. 60, no. 4, pp. 121-129; DOI: 10.35995/jame60040010.
  • [27] T. Linke, J.R. van der Sluis, “The influence of coatings on the graphite structure in the rim-zone of ductile iron castings”, in Proceeding of 60th World Foundry Congress, 26 September - 1 October 1993. Hague, The Netherlands: World Foundry Organization, 1993.
  • [28] M. Hosadyna, “The effect of sulfur contained in self-hardening moulding sands on the surface structure of ductile iron castings”, PhD thesis AGH, Kraków, Poland, 2012 (in Polish).
  • [29] M. Skrzyński, R. Dańko, P. Czapla, “Regeneration of used moulding sand with furfuryl resin on a laboratory stand”, Archives of Foundry Engineering, 2014, vol. 14, no. 4 spec., pp. 111-114.
  • [30] R. Dańko, M. Łucarz, J. Dańko, “Mechanical and mechanical-thermal regeneration of the used core sand from the cold-box process”, Archives of Foundry Engineering, 2014, vol. 14, no. 4 spec., pp. 21-24.
  • [31] J. Campbell, Complete Casting Handbook. Amsterdam, Netherlands: Elsevier, 2011.
  • [32] P. Jelinek, Pojivove soustavy slevarenskych formovacich smesi, Chemie slévárenských pojiv. Ostrava OFTIS, 2004 (in Czech).
  • [33] St.M. Dobosz, Thermal activation of quartz sands. AGH Monograph, no. 134, Kraków, Poland, 1990 (in Polish).
  • [34] St.M. Dobosz, Water in moulding and core sand. Kraków, Poland: Akapit, 2006 (in Polish).
  • [35] J.L. Lewandowski, Materials for foundry moulds. Kraków, Poland: Akapit, 1997 (in Polish).
  • [36] Ł. Jamrozowicz, J. Zych, “Influence of Hardening Rate of Moulding Sands with Chemical Binders on Bridges Structure and Strength Properties”, in Proceedings of the 2015 WFO International Forum on Moulding Materials and Casting Technologies, 25-28 September 2015, Changsha, China. WFO Moulding Materials Commission, Foundry Institution of Chinese Mechanical Engineering Society, Productivity Center of Foundry Industry of China, 2015, pp. 90-95.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ed210950-79c6-472d-ac0f-827403713f6e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.