PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Application of selected methods of black box for modelling the settleability process in wastewater treatment plant

Identyfikatory
Warianty tytułu
PL
Zastosowanie wybranych metod czarnej skrzynki do modelowania opadalności w oczyszczalni ścieków
Języki publikacji
EN
Abstrakty
EN
The paper described how the results of measurements of inflow wastewater temperature in the chamber, a degree of external and internal recirculation in the biological-mechanical wastewater treatment plant (WWTP) in Cedzyna near Kielce, Poland, were used to make predictions of settleability of activated sludge. Three methods, namely: multivariate adaptive regression splines (MARS), random forests (RF) and modified random forests (RF + SOM) were employed to compute activated sludge settleability. The results of analysis indicate that modified random forests demonstrate the best predictive abilities.
Rocznik
Strony
119--127
Opis fizyczny
Bibliogr. 19 poz., wykr., tab.
Twórcy
autor
  • Faculty of Environmental, Geomatic and Energy Engineering, Kielce University of Technology, al. Tysiąclecia Państwa Polskiego 7, 25-314 Kielce, Poland
autor
  • Department of Process Engineering, University of Opole, ul. R. Dmowskiego 7/9, 45-365 Opole, Poland, phone +48 77 401 67 00
autor
  • Department of Process Engineering, University of Opole, ul. R. Dmowskiego 7/9, 45-365 Opole, Poland, phone +48 77 401 67 00
Bibliografia
  • [1] Giokas DL, Daigger GT, Sperling M, Kim Y, Paraskevas PA. Comparison and evaluation of empirical zone settling velocity parameters based on sludge volume index using a unified settling characteristics database. Water Res. 2006;37(16):3821-3836. DOI: 10.1016/s0043-1354(03)00298-7.
  • [2] Dellana SA, West D. Predictive modeling for wastewater applications: Linear and nonlinear approaches. Environ Modell Software. 2009;24(1):96-106. DOI: 10.1016/j.envsoft.2008.06.002.
  • [3] Zhang R, Hu X. Effluent quality prediction of wastewater treatment system based on small-world. Ann J Computers. 2012;7(9):2136-2143. DOI: 10.4304/jcp.7.9.2136-2143.
  • [4] Lou I, Zhao Y. Sludge bulking prediction using principle component regression and artificial neural network. Mathemat Probl in Eng. 2012;2012(2012): DOI: 10.1155/2012/237693.
  • [5] Poutiainen H, Niska H, Heinonen-Tanski H, Kolehmainen M. Use of sewer on-line total solids data in wastewater treatment plant modelling. Water Sci Technol. 2010;62(4):743-750. DOI: 10.2166/wst.2010.317.
  • [6] Verma A, Wei X, Kusiak A. Predicting the total suspended solids in wastewater: A data-mining approach. Engineering Applications of Artificial Intelligence. 2013;26(4):1366-1372. DOI: 10.1016/j.engappai.2012.08.015.
  • [7] Kusiak A, Wei X. A data-driven model for maximization of methane production in a wastewater treatment plant. Water Sci Technol. 2012;65(6):1116-1122. DOI: 10.2166/wst.2012.953.
  • [8] Grieu S, Thiéry F, Traoré A, Nguyen TP, Barreau M, Polit M. KSOM and MLP neural networks for on-line estimating the efficiency of an activated sludge proces. Chem Eng J. 2006;1116(1):1-11. DOI: 10.1016/j/cej.2005/10.004.
  • [9] Andres JD, Lorca P, de Cos Juez FJ, Sánchez-Lasheras F. Bankruptcy forecasting: a hybrid approach using Fuzzy c-means clustering and Multivariate Adaptive Regression Splines (MARS). Expert Systems Appl. 2010;38:1866-1875. DOI: 10.1016/j.eswa.2010.07.117.
  • [10] Han HG, Qiao JF. Prediction of actived sludge bulking based on a self-organizing RBF neural network. J Process Control. 2012;22(6):1103-1112. DOI: 10.1016/j.jprocont.2012.04.002.
  • [11] Mwale FD, Adeloye AJ, Rustum R. Application of self-organising maps and multi-layer perceptron-artificial neural networks for streamflow and water level forecasting in data-poor catchments: The case of the Lower Shire floodplain, Malawi. Nordic Hydrol. 2014;45(6):838-854. DOI: 10.2166/nh.2014.168.
  • [12] Rustum R, Adeloye A. Improved modelling of wastewater treatment primary clarifier using hybrid anns. Int J Computer Sci Artificial Intelligen. 2012;2(4):14-22. DOI: 10.5963/IJCSA/0204002. ]
  • [13] Belanche L, Valdes J, Comas J, Roda I, Poch M. Prediction of the bulking phenomenon in wastewater treatment plants. Artificial Intellige in Eng. 2000;14(4);307-317. DOI: 10.1016/S0954-1810(00)00012-1.
  • [14] Friedman J. Multivariate adaptive regression splines. Annals Statistics. 1991;19:1-141. http://projecteuclid.org/download/pdf_1/euclid.aos/1176347963.
  • [15] Breiman L. Random forests. J Machine Learning. 2000;45(1):5-32. DOI: 10.1023/A:1010933404324.
  • [16] Kohonen T. Self-organized formation of topologically correct feature maps. Biol Cybernetics. 1982;43:59-69. DOI: 10.1007/BF00337288.
  • [17] Han HG, Chen QL, Qiao JF. An efficient self-organizing RBF neural network for water quality prediction. Neural Network. 2011;24(7):717-725. DOI: 10.1016/j.neunet.2011.04.006.
  • [18] Han HG, Ying L, Guo YN, Qiao JF. A soft computing method to predict sludge volume index based on a recurrent self-organizing neural network. J Appl Soft Computing. 2016;38(C):477-486. DOI: 10.1016/j.asoc.2015.09.051.
  • [19] Martins AMP, Heijnen JJ, van Loosdrecht MCM. Bulking sludge in biological nutrient removal systems. Biotechnol Bioeng. 2004;86(2):125-135. DOI: 10.1002/bit.20029.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ed1e5f75-64c1-4d4d-92fc-8d701f0bbc11
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.