PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of non-zero mean stress bending-torsion fatigue on fracture surface parameters of 34CrNiMo6 steel notched bars

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Modern methods of testing materials require the use of the latest technologies and combining measurement and calculation methods. It is important to find a quantitative way of describing, among other things, the failures so that it can help to design with high accuracy. This paper studies loading orientations on crack shape and fracture surface changes. The advantage of the entire fracture surface method is simplicity and applicability in studies on other materials, shapes and loadings. A higher values of fracture surface parameters (Sx, Vx) was observed in failure specimens with lower σ/τ (B/T) ratios. It has been observed that largest crack lengths with a small number of cycles occur for loading combinations different then B=T. As well as analyzed surface parameters Sx, Vx, are higher for larger number of cycles to crack initiation (Ni) values.
Rocznik
Strony
167--173
Opis fizyczny
Bibliogr. 40 poz., rys., tab.
Twórcy
  • University of Occupational Safety Management, Bankowa 8, 40-007 Katowice, Poland
  • Lublin University of Technology, Faculty of Mechanical Engineering, Nadbystrzycka 36D, 20-618 Lublin, Poland
  • Opole University of Technology, Prószkowska 76, 45-758 Opole, Poland
  • University of Coimbra, CEMMPRE, Department of Mechanical Engineering, Coimbra, Portugal
autor
  • University of Coimbra, CEMMPRE, Department of Mechanical Engineering, Coimbra, Portugal
Bibliografia
  • 1.Abbott, E.J., Firestone, F.A., 1933. Specifying surface quality, Mech. Eng. 65, 569-572.
  • 2.Arsalani, M., Razfar, M.R., Abdullah, A., Khajehzadeh, M., 2020. Fatigue behavior improvement of hardened parts using sequential hard turning, grinding, and ball burnishing operations, Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications.
  • 3.Böhm, M., Kowalski, M., Niesłony, A., 2015. Multiaxial fatigue test stand concept – Stand and control design, Adv. Intell. Syst. Comput. DOI: 10.1007/978-3-319-10990-9_41
  • 4.Branco, R., Costa, J.D., Berto, F., Antunes, F.V., 2017. Effect of loading orientation on fatigue behaviour in severely notched round bars under non-zero mean stress bending-torsion, Theor. Appl. Fract. Mech., 92, 185-197. DOI: 10.1016/J.TAFMEC.2017.07.015
  • 5.Branco, R., Costa, J.D.M., Antunes, F.V., Perdigão, S., 2016. Monotonic and cyclic behavior of DIN 34CrNiMo6 tempered alloy steel, Metals (Basel). DOI: 10.3390/met6050098
  • 6.Branco, R., Costa, J.D.M., Berto, F., Razavi, S.M.J., Ferreira, J.A.M., Capela, C., Santos, L., Antunes, F., 2018. Low-cycle fatigue behaviour of AISI 18Ni300 maraging steel produced by selective laser melting, Metals (Basel). DOI: 10.3390/met8010032
  • 7.Carpinteri, A., Spagnoli, A., Vantadori, S., Viappiani, D., 2008. A multiaxial criterion for notch high-cycle fatigue using a critical-point method. Eng. Fract, Mech. DOI: 10.1016/j.engfracmech.2006.11.002
  • 8.Feng, X., Senin, N., Su, R., Ramasamy, S., Leach, R., 2019. Optical measurement of surface topographies with transparent coatings, Opt. Lasers Eng. 121, 261–270. DOI: 10.1016/J.OPTLASENG. 2019.04.018
  • 9.Fonte, M., Romeiro, F., Freitas, M., 2007. Environment effects and surface roughness on fatigue crack growth at negative R-ratios, Int. J. Fatigue 29, 1971-1977. DOI: 10.1016/J.IJFATIGUE.2007.02.027
  • 10.Goldsmith, N.T., Wanhill, R.J.H., Molent, L., 2019. Quantitative fractography of fatigue and an illustrative case study, Eng. Fail. Anal. 96, 426-435. DOI: 10.1016/J.ENGFAILANAL.2018.10.013
  • 11.International Organization for Standardization, 2012. Geometrical product specifications (GPS) - Surface texture: Areal Part 2: Terms, definitions and surface texture parameters, Int. Stand. ISO. DOI: 10.1136/ bmjopen-2015-009366
  • 12.ISO 4287, 1997. Geometrical Product Specifications (GPS) - Surface texture: Profile method - Terms, definitions and surface texture parameters, Int. Organ. Stand. 25.
  • 13.Jamali, J., Mahmoodi, M.J., Hassanzadeh-Aghdam, M.K., Wood, J.T., 2019. A mechanistic criterion for the mixed-mode fracture of unidirectional polymer matrix composites, Compos, Part B Eng. 176, 107316. DOI: 10.1016/J.COMPOSITESB.2019.107316
  • 14.Jollivet, T., Greenhalgh, E., 2015. Fractography, a Powerful Tool for Identifying and Understanding Fatigue in Composite Materials, Procedia Eng. 133, 171-178. DOI: 10.1016/J.PROENG.2015.12.646
  • 15.Kaplonek, W., Nadolny, K., Królczyk, G.M., 2016. The use of focus-variation microscopy for the assessment of active surfaces of a new generation of coated abrasive tools, Meas. Sci. Rev. DOI: 10.1515/msr-2016-0007
  • 16.Kowal, M., Szala, M., 2020. Diagnosis of the microstructural and mechanical properties of over century-old steel railway bridge components, Eng. Fail. Anal. 110, 104447. DOI: 10.1016/J.ENGFAILANAL. 2020.104447
  • 17.Lachowicz, C. T., Owsiński, R. 2020. Comparative analysis of fatigue energy characteristics of S355J2 steel subjected to multi-axis loads, Materials, 13(11) https://doi:10.3390/ma13112470
  • 18.Macek, W., 2019a. Post-failure fracture surface analysis of notched steel specimens after bending-torsion fatigue, Eng. Fail. Anal. DOI: 10.1016/j.engfailanal.2019.07.056
  • 19.Macek, W., 2019b. Fractal analysis of the bending-torsion fatigue fracture of aluminium alloy, Eng. Fail. Anal. 99, 97-107. DOI: 10.1016/ J.ENGFAILANAL.2019.02.007
  • 20.Macek, Wojciech, Branco, R., Szala, M., Marciniak, Z., Ulewicz, R., Sczygiol, N., Kardasz, P., 2020a. Profile and Areal Surface Parameters for Fatigue Fracture Characterisation, Materials (Basel). 13, 3691. DOI: 10.3390/ma13173691
  • 21.Macek, W., Branco, R., Trembacz, J., Costa, J.D., Ferreira, J.A.M., Capela, C., 2020. Effect of multiaxial bending-torsion loading on fracture surface parameters in high-strength steels processed by conventional and additive manufacturing. Eng. Fail. Anal. 118. DOI: 10.1016/ j.engfailanal.2020.104784
  • 22.Pawliczek, R., Prażmowski, M., 2015. Study on material property changes of mild steel S355 caused by block loads with varying mean stress, Int. J. Fatigue. DOI: 10.1016/j.ijfatigue.2015.05.019
  • 23.Pejkowski, Ł., Skibicki D., Seyda J., 2018. Stress-strain response and fatigue life of a material subjected to asynchronous loadings, AIP Conference Proceedings 2028, 020016; DOI: 10.1063/1.5066406
  • 24.Robak, G., 2020. Using a variable value of the fictitious radius to estimate fatigue life of notched elements, Fatigue and Fracture of Engineering Materials and Structures, 43(9), 2006-2023. DOI: 10.1111/ffe.13280
  • 25.Rozumek, D., Marciniak, Z., Lesiuk, G., Correia, J.A., de Jesus, A.M.P., 2018. Experimental and numerical investigation of mixed mode I + II and I + III fatigue crack growth in S355J0 steel, Int. J. Fatigue 113, 160-170. DOI: 10.1016/J.IJFATIGUE.2018.04.005
  • 26.Saito, S., Ogawa, F., Itoh, T., 2020. Investigation of fatigue strength under wide-ranged biaxial stress for two types of stainless steel using a thinwalled hollow cylinder specimen, Int. J. Fatigue 105611. DOI: 10.1016/J.IJFATIGUE.2020.105611
  • 27.Senin, N., Thompson, A., Leach, R.K., 2017. Characterisation of the topography of metal additive surface features with different measurement technologies, Meas. Sci. Technol. DOI: 10.1088/1361-6501/aa7ce2
  • 28.Singh, A.K., Datta, S., Chattopadhyay, A., Riddick, J.C., Hall, A.J., 2019. Fatigue crack initiation and propagation behavior in Al – 7075 alloy under in-phase bending-torsion loading, Int. J. Fatigue 126, 346-356. DOI: 10.1016/J.IJFATIGUE.2019.05.024
  • 29.Sinha, S., Nene, S.S., Frank, M., Liu, K., Lebensohn, R.A., Mishra, R.S., 2020. Deformation mechanisms and ductile fracture characteristics of a friction stir processed transformative high entropy alloy, Acta Mater. 184, 164–178. DOI: 10.1016/J.ACTAMAT.2019.11.056
  • 30.Slámečka, K., Pokluda, J., Kianicová, M., Major, S., Dvořák, I., 2010. Quantitative fractography of fish-eye crack formation under bendingtorsion fatigue, Int. J. Fatigue 32. DOI: 10.1016/j.ijfatigue. 2009.07.009
  • 31.Stach, S., Sapota, W., Ţălu, Ş., Ahmadpourian, A., Luna, C., Ghobadi, N., Arman, A., Ganji, M., 2017. 3-D surface stereometry studies of sputtered TiN thin films obtained at different substrate temperatures, J. Mater. Sci. Mater. Electron. DOI: 10.1007/s10854-016-5774-9
  • 32.Stemp, W.J., Macdonald, D.A., Gleason, M.A., 2019. Testing imaging confocal microscopy, laser scanning confocal microscopy, and focus variation microscopy for microscale measurement of edge cross-sections and calculation of edge curvature on stone tools: Preliminary results, J. Archaeol. Sci. Reports 24, 513-525. DOI: 10.1016/ J.JASREP.2019.02.010
  • 33.Susmel, L., Petrone, N., 2003. Multiaxial fatigue life estimations for 6082-T6 cylindrical specimens under in-phase and out-of-phase biaxial loadings, Eur. Struct. Integr. Soc. 31, 83-104. DOI: 10.1016/S1566-1369(03)80006-7
  • 34.Szala, M., 2017. Application of computer image analysis software for determining incubation period of cavitation erosion - preliminary results, ITM Web Conf. 15 06003 DOI: 10.1051/itmconf/ 20171506003
  • 35.Trško, L., Lago, Ján, Jambor, M., Nový, F., Bokůvka, O., Florková, Z. 2020. Microstructure and residual stress analysis of Strenx 700 MC welded joint, Production Engineering Archives, 26(2), 41-44. DOI: 10.30657/pea.2020.26.09
  • 36.Ulewicz, R., Nový, F., Novák, P., Palček, P., 2019. The investigation of the fatigue failure of passenger carriage draw-hook, Eng. Fail. Anal. 104, 609-616. DOI: 10.1016/j.engfailanal.2019.06.036
  • 37.Ulewicz, R., Szataniak, P., Novy, F. 2014. Fatigue Properties Of Wear Resistant Martensitic Steel, Metal 2014 - 23rd International Conference on Metallurgy and Materials, Conference Proceedings
  • 38.Vanderesse, N., Texier, D., Bocher, P., 2020. Effect of porosities on brazed martensitic steel tensile properties: 2D and 3D pre-mortem vs postmortem characterizations, Mater. Charact. 160, 110084. DOI: 10.1016/J.MATCHAR.2019.110084
  • 39.Wu, Q., Liu, X., Liang, Z. et al. 2020. Fatigue life prediction model of metallic materials considering crack propagation and closure effect, J Braz. Soc. Mech. Sci. Eng. 42, 424. DOI: 10.1007/s40430-020-02512-1
  • 40.Yang, D., Xiao, X., Liu, Y., & Sun, J., 2019. Peripheral milling-induced residual stress and its effect on tensile–tensile fatigue life of aeronautic titanium alloy Ti-6Al-4V, The Aeronautical Journal, 123(1260), 212- 229. DOI: doi:10.1017/aer.2018.151
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ed1c3910-ce5a-4ede-8eed-03bcb438bb86
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.