PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analysis of the Applied Flight Trajectory Influence on the Air Pollution in the Area of Warsaw Chopin Airport

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
One of the adverse effects of airport activity is the deterioration of local air quality. Aircraft operations are among the main airport-related emission sources of harmful compounds into the atmosphere. Breathing polluted air by residents of areas adjacent to airports causes numerous illnesses and can even lead to death. Using the Aviation Environmental Design Tool, different departure tracks from Warsaw Chopin Airport were compared in terms of their impact on air quality. First, the emissions of selected contaminants during each flight were estimated. The highest emissions were obtained for nitrogen oxides, which exceeded carbon monoxide emissions by a factor of 20 and particulate matter by a factor of 150. Subsequently, the pollutants’ dispersion was simulated, resulting in contours representing the concentrations of individual toxic compounds. Among other things, a strong influence of wind direction and speed on the environmental performance of flights was observed. The largest dispersion was obtained for nitrogen oxides–small concentrations were simulated more than 50 km from the emission source.
Rocznik
Strony
294--305
Opis fizyczny
Bibliogr. 44 poz., rys., tab.
Twórcy
  • Poznan University of Technology, plac Marii Skłodowskiej-Curie 5, 60-965 Poznań, Poland
Bibliografia
  • 1. Landrigan P.J., Air pollution and health, https://www.thelancet.com/journals/lanpub/article/ PIIS2468-2667(16)30023-8/fulltext
  • 2. Bai L., Wang J.Z., Ma X.J., Lu H.Y. 2018. Air pollution forecasts: An overview. Int. J. Environ. Res. Public Health, 15, 780.
  • 3. Jasiński R., Galant-Gołębiewska M., Nowak M., Ginter M., Kurzawska P., Kurtyka K., Maciejewsk M. 2021. Case study of pollution with particulate matter in selected locations of Polish cities. Energies, 14, 2529. https://doi.org/10.3390/en14092529
  • 4. Organisation for Economic Co-operation and Development. The economic consequences of outdoor air pollution. Paris: Organisation for Economic Cooperation and Development Publishing, 2016.
  • 5. European Environment Agency, Aviation and shipping–impacts on Europe’s environment. TERM 2017. Transport and Environment Reporting Mechanism (TERM) report.
  • 6. International Civil Aviation Organization. Airport Air Quality Manual. Doc. 9889. ICAO, Second Edition, 2020. Available online: https://www.icao. int/publications/Documents/9889_cons_en. pdf (accessed on 13 October 2021).
  • 7. Masiol M., Harrison R.M. 2014. Aircraft engine exhaust emissions and other airport-related contributions to ambient air pollution: A review. Atmos. Environ., 95, 409–455. https://doi.org/10.1016/j. atmosenv.2014.05.070
  • 8. Przespolewska-Gdowik K., Jasiński R. 2021. Analysis of the Nicolaus Copernicus Airport activity in terms of the flight operations impact on air pollution. Energies, 14, 8236. https://doi.org/10.3390/en14248236
  • 9. EUROCONTROL, Aviation Outlook 2050 Main Report, April 2022. Available online: https://www. eurocontrol.int/publication/eurocontrol-aviationoutlook-2050 (accessed on 13 July 2022).
  • 10. Perovic J. The Economic Benefits of Aviation and Performance in the Travel & Tourism Competitiveness Index; Blanke, J., Chiesa, T., Eds.; The Travel & Tourism Competitiveness Report 2013. Reducing barriers to economic growth and job creation; World Economic Forum: Geneva. Available online: https:// www3.weforum.org/docs/TTCR/2013/TTCR_ Chapter1.4_2013.pdf (accessed on 13 July 2022).
  • 11. Smyth M., Pearce B. 2007. Aviation Economic Benefits; IATA Economics Briefing No 8; IATA: July. Available online: https://www.iata.org/en/iatarepository/publications/economic-reports/aviationeconomic-benefits/ (accessed on 13 July 2022).
  • 12. European Aviation Environmental Report. 2019. Catalogue number: TO-01-18-673-EN-N; EASA, EEA, EUROCONTROL: 24 January 2019. https:// doi.org/10.2822/309946
  • 13. Penner J.E., Lister D.H., Griggs D.J., Dokken D.J., McFarland M., Eds. 1999. Aviation and the Global Atmosphere A Special Report of IPCC Working Groups I and III in collaboration with the Scientific Assessment Panel to the Montreal Protocol on Substances that Deplete the Ozone Layer; IPCC.
  • 14. Aviation and shipping–impacts on Europe’s environment; TERM 2017: Transport and Environment Reporting Mechanism (TERM) report; EEA: Luxembourg, 2018, https://doi.org/10.2800/4907. Available online: https://www.eea.europa.eu/publications/ term-report-2017 (accessed on 13 July 2022).
  • 15. European Aviation Environmental Report. 2019. Catalogue number: TO-01-18-673-EN-N; EASA, EEA, EUROCONTROL: 24 January 2019, https:// doi.org/10.2822/309946
  • 16. EEA. Carbon dioxide. Available online: https://www. eea.europa.eu/themes/air/air-quality/resources/glossary/carbon-dioxide (accessed on 13 July 2021).
  • 17. Azuma K., Kagi N., Yanagi, U., Osawa. H. 2018. Effects of low-level inhalation exposure to carbon dioxide in indoor environments: A short review on human health and psychomotor performance. Environment International, 121, 51–56. https://doi. org/10.1016/j.envint.2018.08.059
  • 18. Manisalidis I., Stavropoulou E., Stavropoulos A., Bezirtzoglou E. 2020. Environmental and health impacts of air pollution: A review. Front. Public Health, 8, 14:1–14:13. https://doi.org/10.3389/ fpubh.2020.00014
  • 19. Lee D.S., Pitari G., Grewec V., Gierens K., Penner J.E., Petzold A., Prather M.J., Schumann U. Bais A., Berntsen T., Iachetti D., Lim L.L., Sausen R. 2010. Transport impacts on atmosphere and climate: aviation. Atmos. Environ., 44, 4678–4734. https:// doi.org/10.1016/j.atmosenv.2009.06.005
  • 20. Jasiński R. 2019. Estimation of particles emissions from a jet engine in real flight. In E3S Web Conf, Proceedings of the 11th Conference on Interdisciplinary Problems in Environmental Protection and Engineering EKO-DOK, Polanica Zdrój, Poland, 8–10 April 2019. EDP Sciences: Les Ulis, France, 100, 00029.
  • 21. Jasiński R., Galant-Gołębiewska M., Nowak M., Kurtyka K.; Kurzawska P., Maciejewska M., Ginter M. 2021. Emissions and concentrations of particulate matter in poznan compared with other polish and european cities. Atmosphere, 12(5), 533. https://doi.org/10.3390/atmos12050533
  • 22. Sharan M., Gopalakrishnan S. 2003. Mathematical modeling of diffusion and transport of pollutants in the atmospheric boundary layer. Pure Appl. Geophys., 160, 357–394, https://doi.org/10.1007/ s00024-003-8784-5
  • 23. Hoffert M.I. 1972. Atmospheric transport. dispersion and chemical reactions in air pollution: a review. AI.44 .J. 1972, 10, 3777387. https://doi. org/10.2514/3.50107
  • 24. Mikkelsen, T. 2003. Modeling of pollutant transport in the atmosphere. Atmospheric Physics Division. Wind Department, Risq National Laboratory, Denmark.
  • 25. Monks P.S., Granier C., Fuzzi S., Stohl A., Williams M.L., Akimoto H., Amann M., Baklanov A., Baltensperger U., Bey I., Blake N., Blake R.S., Carslaw K., Cooper O.R., Dentener F., Fowler D., Fragkou E., Frost G.J., Generoso S., Ginoux P., Grewe V., Guenther A., Hansson H.C., Henne S., Hjorth J., Hofzumahaus A., Huntrieser H., Isaksen I.S.A., Jenkin M.E., Kaiser J., Kanakidou M., Klimont Z., Kulmala M., Laj P., Lawrence M.G., Lee J.D., Liousse C., Maione M., McFiggans G., Metzger A., Mieville A., Moussiopoulos N., Orlando J.J., O’Dowd C.D., Palmer P.I., Parrish D.D., Petzold A., Platt U., Pöschl U., Prévôt A.S.H., Reeves C.E., Reimann S., Rudich Y., Sellegri K., Steinbrecher R., Simpson D., ten Brink H., Theloke J., van der Werf G.R., Vautard R., Vestreng V., Vlachokostas C., von Glasow R. 2009. Atmospheric composition change – global and regional air quality. Atmospheric Environment, 43, 5268–5350, https://doi.org/10.1016/j. atmosenv.2009.08.021
  • 26. Zannetti P., Air Pollution Modeling (Van Nostrand Reinhold, New York. 1990), 444.
  • 27. EEA. 5. Modelling. Available online: https://www.eea.europa.eu/publications/TEC11a/page011.html (accessed on 13 July 2022).
  • 28. Sarrat C., Aubry S., Chaboud T., Lac C. 2017. Modelling airport pollutants dispersion at high resolution. Aerospace, 4(3), 46:1–46:10. https://doi. org/10.3390/aerospace4030046
  • 29. Steib R., Labancz K., Ferenczi Z., Alföldy B. 2008. Airport (Budapest Ferihegy – Hungary) air quality analysis using the EDMS modeling system. Part I. Model development and testing. Idojaras, 112, 99–112.
  • 30. Barrett S., Britter R. A simple approach for rapid operational air quality modelling at airports. In Paper for 11th International Conference on Harmonisation within Atmospheric Dispersion Modelling for Regulatory Purposes, Cambridge, UK, 2–5 July 2007.
  • 31. Sarrat C., Aubry S., Chaboud T., Lac C. 2017. Modelling Airport Pollutants Dispersion at High Resolution. Aerospace, 4, 46.
  • 32. Civil Aviation Authority of the Republic of Poland, Statistics, analysis Available online: https://ulc.gov. pl/pl/statystyki-analizy/statystyki-i-analizy-rynkutransportu-lotniczego/3724-statystyki-wg-portowlotniczych (accessed on 13 July 2022).
  • 33. International Civil Aviation Organization. Annex 16 to the Convention of International Civil Aviation–Environmental Protection, Volume II–Aircraft Engine Emissions. Fourth Edition, July 2017.
  • 34. Kuzu S.L. 2017. Estimation and dispersion modeling of landing and take-off (LTO) cycle emissions from Atatürk International Airport. Air Quality, Atmosphere & Health, 11(2), 153–161. https://doi. org/10.1007/s11869-017-0525-5
  • 35. Tokuslu A. 2021. Calculation of aircraft emissions during landing and take-off (LTO) cycles at Batumi International Airport, Georgia. January 2021, International Journal of Environment and Geoinformatics 8(2): 186–192. https://doi.org/10.30897/ijegeo.836780
  • 36. Guerra S.A., Lane D.D., Marotz G.A., Carter R.E., Hohl C.M., Baldauf R.W. 2006. Effects of wind direction on coarse and fine particulate matter concentrations in Southeast Kansas. Journal of the Air & Waste Management Association, 56, 1525–1531. https://doi.org/10.1080/10473289.2006.10464559.
  • 37. Giovannini L., Ferrero E., Karl T., Rotach M.W., Staquet C., Trini Castelli S., Zardi D. 2020. Atmospheric pollutant dispersion over complex terrain: Challenges and needs for improving air quality measurements and modeling. Atmosphere, 11(6), 646.
  • 38. https://www.meteo.waw.pl/
  • 39. Oleniacz R., Bogacki M., Szulecka A., Rzeszutek M., Mazur M. Assessing the impact of wind speed and mixing-layer height on air quality in Krakow (Poland) in the years 2014–2015. https://doi.org/10.7862/ rb.2016.168
  • 40. Liu Q., Wang Z., Ye Q., Zhou D., Deng X., Hu L., Yin H. 2016. The influence of the weather conditions on main atmospheric pollutants concentration in Chengdu. Advances in Engineering Research, 115, 513–518. https://doi.org/10.2991/eesed-16.2017.71
  • 41. Liu X., Hadiatullah H., Tai P., Xu Y., Zhang X., Schnelle-Kreis J., Schloter-Hai B., Zimmermann R. 2021. Air pollution in Germany: Spatio-temporal variations and their driving factors based on continuous data from 2008 to 2018. Environmental Pollution, 276, 116732. https://doi.org/10.1016/j. envpol.2021.1167
  • 42. Alex De Visscher, Air Dispersion Modeling. Wiley, 2014.
  • 43. Tang H., Zhang Y. 2018. Reducing Airport Pollution and Consequent Health Impacts to Local Community. https://euflightcompensation.com/ how-many-airports-are-there-in-the-world/
  • 44. Fleuti E., Hofmann P. Airport local air quality studies, ALAQS case study: Zurich Airport 2004, a comparison of modelled and measured air quality. EEC/ SEE/2005/017; EUROCONTROL Experimental Centre: 2005. Available online: https://www.eurocontrol. int/node/9852 (accessed on 2 September 2022).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ed1c17d8-2032-4fdd-90c2-5c94efeecb2b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.