PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of Polytetrafluorethylene on the Mechanical and Safety Properties of a Composite Modified Double Base Propellant

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A novel Composite Modified Double Base (CMDB) propellant, formed by mechanically mixing aluminium/polytetrafluorethylene (Al/PTFE) powders, was prepared through a rolling process. A variety of tests, such as tensile properties, particle size analysis etc., were carried out to study the influence of PTFE on the CMDB propellant properties. The PTFE deformed from particles to fibres under a uniform shear force, forming a fibre network which greatly improved the propellant’s mechanical properties. Compared to that of the CMDB propellant without PTFE, the elongation of the propellant containing 6% PTFE was increased by 26 times, and moreover, the impact strength was enhanced by 326% at −40 °C. Significantly, the propellant friction and impact sensitivities were reduced by 75.8% and 35.6%, respectively. In addition, the presence of PTFE in the propellant resulted in fluorination of the Al. The gaseous combustion product AlF3 reduced the propellant combustion agglomeration. Consequently, PTFE significantly promoted the propellant’s mechanical performance, decreased the shock (friction, impact) sensitivity and reduced combustion agglomeration.
Rocznik
Strony
468--484
Opis fizyczny
Bibliogr. 48 poz., rys., tab.
Twórcy
autor
  • Beijing Institute of Technology, 5 South Zhongguancun St., Haidian District, Beijing 100081, China
autor
  • Beijing Institute of Technology, 5 South Zhongguancun St., Haidian District, Beijing 100081, China
autor
  • Beijing Institute of Technology, 5 South Zhongguancun St., Haidian District, Beijing 100081, China
autor
  • Beijing Institute of Technology, 5 South Zhongguancun St., Haidian District, Beijing 100081, China
autor
  • Beijing Institute of Technology, 5 South Zhongguancun St., Haidian District, Beijing 100081, China
autor
  • Beijing Institute of Technology, 5 South Zhongguancun St., Haidian District, Beijing 100081, China
Bibliografia
  • [1] Tan, H. M. The Chemistry and Technology of Solid Rocket Propellant, BeijingInstitute of Technology Press, Beijing, 2015, pp. 114-420.
  • [2] Kubota, N. Propellants and Explosives. Wiley-VCH, Weinheim 2006, pp. 69-112; ISBN 9783527314249.
  • [3] Kubota, N. Energetics of HMX-Based Composite Modified Double-Base Propellant Combustion. J. Propul. Power 1999, 15(6): 759-762.
  • [4] An, C. W.; Li, F. S.; Wang, J. Y.; Guo, X. D. Surface Coating of Nitroamine Explosives and Its Effects on the Performance of Composite Modified Double-Base Propellants. J. Propul. Power 2015, 28(2): 444-448.
  • [5] Nair, U. R.; Gore, G. M.; Sivabalan, R.; Divekar, C. N.; Asthana, S. N.; Singh, H. Studies on Advanced CL-20-based Composite Modified Double-Base Propellants. J. Propul. Power 1971, 20(5): 952-955.
  • [6] Yano, Y.; Kubota, N. Combustion of HMX-CMDB Propellants (II). Propellants Explos. Pyrotech. 2010, 11(1): 1-5.
  • [7] Asthana, S. N.; Athawale, B. K.; Singh, H. Impact, Friction, Shock Sensitivities and DDT Behaviour of Advanced CMDB Propellants. Def. Sci. J. 1989, 39(1): 99-107.
  • [8] Choudhari, M. K.; Dhar, S. S.; Shrotri, P. G.; Singh, H. Effect of High Energy Materials on Sensitivity of Composite Modified Double Base (CMDB) Propellant System. Def. Sci. J. 2013, 42(4): 253-257.
  • [9] Gautam, G. K.; Pundlik, S. M.; Joshi, A. D.; Mulage, K. S.; Singh, S. N. Study of Energetic Nitramine Extruded Double-Base Propellants. Def. Sci. J. 2013, 48(2): 235-243.
  • [10] Yan, Q. L.; Li, X. J.; Wang, Y.; Zhang, W. H.; Zhao, F. Q. Combustion Mechanism of Double-Base Propellant Containing Nitrogen Heterocyclic Nitroamines (I): the Effect of Heat and Mass Transfer to the Burning Characteristics. Combust. Flame 2009, 156(3): 633-641.
  • [11] Bhat, V. K.; Singh, H. Cross-Linked Slurry Cast Composite Modified Double Base Propellants: Mechanical Properties. Def. Sci. J. 1987, 37(1): 39-44.
  • [12] Robinson, A. E. Crosslinked Double Base Propellant Binders. Patent US 4234364, 1980.
  • [13] Elrick, D. E.; Gilbert, H. Crosslinked Carboxyl Containing Polymer and Nitrocellulose as Solid Propellant Binder. Patent US 4029529, 1977.
  • [14] Dehm, H. C. Composite Modified Double-Base Propellant with Filler Bonding Agent. Patent US 4038115, 1977.
  • [15] Manning, T. G.; Strauss, B. Reduction of Energetic Filler Sensitivity in Propellants through Coating. Patent US 6524706 B1, 2003.
  • [16] Smith, K. T.; Johansen, Ø. H.; Skjold, E.; Gjersoe, R. Pressable Plastic-bound Explosive Composition. Patent US 7857922 B2, 2010.
  • [17] Li, W.; Song, Q. C.; Wang, W. B.; Chen, Y. K. The Influence of DDT-Preventing Agents upon the Impact Sensitivity of the Polyurethane-bonded RDX. Propellants Explos. Pyrotech. 1996, 21(5): 247-250.
  • [18] Lu, M.; Chen, Y.; Luo, Y. J.; Tan, H. M. Preparation of Waterborne Polyurethane Latex and Study on Its Cladding of RDX. J. Propul. Technol. 2005, 26(1): 89-92.
  • [19] Dagley, I. J.; Ho, S. Y.; Montelli, L.; Louey, C. N. High Strain Rate Impact Ignition of RDX with Ethylene-Vinyl Acetate (EVA) Copolymers. Combust. Flame 1992, 89(3-4): 271-282.
  • [20] Kincaid, J. F.; Reed, R. Bonding Agent for HMX (Cyclotetramethylenetetranitramine). Patent US 4350542, 1982.
  • [21] Morgan, R. A.; Stewart, C. W.; Thomas, E. W.; Stahl, W. M. Reinforcement with Fluoroplastic Additives. Rubber World, (United States) 1991, 204: 2.
  • [22] Osborne, D. T.; Pantoya, M. L. Effect of Al Particle Size on the Thermal Degradation of Al/Teflon Mixtures. Combust. Sci. Technol. 2007, 179(8): 467-1480.
  • [23] Sippel, T. R.; Son, S. F.; Groven, L. J. Altering Reactivity of Aluminum with Selective Inclusion of Polytetrafluoroethylene through Mechanical Activation. Propellants Explos. Pyrotech. 2013, 38(2): 286-295.
  • [24] Sippel, T. R.; Son, S. F.; Groven, L. J.; Zhang, S.; Dreizin, E. L. Exploring Mechanisms for Agglomerate Reduction in Composite Solid Propellants with Polyethylene Inclusion Modified Aluminium. Combust. Flame 2015, 162(3): 846-854.
  • [25] Sippel, T. R.; Son, S. F.; Groven, L. J. Aluminum Agglomeration Reduction in a Composite Propellant Using Tailored Al/PTFE Particles. Combust. Flame 2014, 161(1): 311-321.
  • [26] Watson, K. W.; Pantoya, M. L.; Levitas, V. I. Fast Reactions with Nano- and Micrometer Aluminum: a Study on Oxidation versus Fluorination. Combust. Flame 2008, 155(4): 619-634.
  • [27] Mulamba, O.; Pantoya, M. L. Exothermic Surface Chemistry on Aluminum Particles Promoting Reactivity. Appl. Surf. Sci. 2014, 315(1): 90-94.
  • [28] Gaurav, M.; Ramakrishna, P. A. Effect of Mechanical Activation of High Specific Surface Area Aluminium with PTFE on Composite Solid Propellant. Combust. Flame 2016, 166: 203-215.
  • [29] Austruy, H. Solid Rocket Propulsion Technology. Pergamon Press Ltd., Oxford 1993, 369-412; ISBN 9780080409993.
  • [30] Zhang, Y. H.; Liu, C. T.; Lv, Y. Y.; Zhou, Z. W.; Wang, F. J.; Shao, Z. Q.; Zuo, Y. Y.; Wei, X. L. Preparation and Characteristic of Modified Double-Base Propellant Modified with Cellulose Nanofibers. Integr. Ferroelectr. 2016, 171(1): 115-123.
  • [31] Meesorn, W.; Shirole, A.; Vanhecke, D.; Espinosa, L. M. D.; Weder, C. A Simple and Versatile Strategy to Improve the Mechanical Properties of Polymer Nanocomposites with Cellulose Nanocrystals. Macromolecules 2017, 50(6): 2364-2374.
  • [32] Grunert, M.; Winter, W. T. Nanocomposites of Cellulose Acetate Butyrate Reinforced with Cellulose Nanocrystals. J. Polym. Environ. 2002, 10(1-2): 27-30.
  • [33] Unal, H.; Mimaroglu, A.; Kadıoglu, U.; Ekiz, H. Sliding Friction and Wear Behaviour of Polytetrafluoroethylene and Its Composites under Dry Conditions. Mater. Des. 2004, 25(3): 239-245.
  • [34] Koch, E.-C. Metal-Fluorocarbon Based Energetic Materials. Wiley-VCH, Weinheim 2012, pp. 20-22; ISBN 9783527329205.
  • [35] Clark, E. S. The Molecular Conformations of Polytetrafluoroethylene: Forms II and IV. Polymer 1999, 40(16): 4659-4665.
  • [36] Clark, E. S.; Muus, L. T. Partial Disordering and Crystal Transitions in Polytetrafluoroethylene. Zeitschrift Für Kristallographie 1962, 117(2-3): 119-127.
  • [37] Yi, J. H.; Zhao, F. Q.; Xu, S. Y.; Zhang, L. Y.; Gao, H. X.; Hu, R. Z. Effects of Pressure and TEGDN Content on Decomposition Reaction Mechanism and Kinetics of DB Gun Propellant Containing the Mixed Ester of TEGDN and NG. J. Hazard. Mater. 2009, 165(1-3): 853-859.
  • [38] van der Heijden, A. E. D. M.; Bouma, R. H. B. Crystallization and Characterization of RDX, HMX, and CL-20. Cryst. Growth Des. 2004, 4(5): 999-1007.
  • [39] Kröber, H.; Teipel, U. Crystallization of Insensitive HMX. Propellants Explos. Pyrotech. 2010, 33(1): 33-36.
  • [40] Ruth, M. D.; Duncan, S. W. Relationship between RDX Properties and Sensitivity. Propellants Explos. Pyrotech. 2010, 33(1): 4-13.
  • [41] An, C. W.; Song, X. L.; Guo, X. D.; Wang, Y.; Yan, B.; Li, F. S. Influence of Surface Coating of RDX Fillers on Mechanical Sensitivity and Properties of CMDB Propellant. J. Solid. Rocket. Technol. 2007, 30(6): 521-524.
  • [42] Ho, S. Y.; Fong, C. W. Correlation between Fracture Properties and Dynamic Mechanical Relaxations in Composite Propellants. Polymer 1987, 28(5): 739-744.
  • [43] Ho, S. Y.; Fong, C. W. Relationship between Impact Ignition Sensitivity and Kinetics of the Thermal Decomposition of Solid Propellants. Combust. Flame 1989, 75(2): 139-151.
  • [44] Walley, S. M. Impact Sensitivity of Propellants. Proc. Phys. Soc. London, Sect. A 1992, 438(1904): 571-583.
  • [45] Field, J. E. Hot Spot Ignition Mechanisms for Explosives. Proc. Roy. Soc. A-MATH. PHY. 1992, 339(1654): 269-283.
  • [46] Trabelsi, M.; Kharrat, M.; Dammak, M. Impact of Lubrication on the Tribological Behaviour of PTFE Composites for Guide Rings Application. Bull. Mater. Sci. 2016, 39(5): 1-7.
  • [47] Winter, R. E.; Field, J. E. The Role of Localized Plastic Flow in the Impact Initiation of Explosives. Proc. Phys. Soc. London, Sect. A 1975, 343(1634): 99-413.
  • [48] Klug, H. P.; Alexander, L. E. X-Ray Diffraction Procedures for Polycrystalline and Amorphous Materials. Wiley-VCH, Weinheim 1974, 992.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ed1c1243-2ce9-46bd-9f49-089283d96c13
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.