PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Alternative vertical electrical sounding technique for hydraulic parameters estimation of the quaternary basaltic aquifer in Deir Al Adas area, Yarmouk Basin, Southern Syria

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
An alternative geoelectrical approach, based on using the technique of vertical electrical sounding (VES), is developed and proposed to estimate the hydraulic conductivity and transmissivity parameters of the quaternary fractured basalt aquifer (B1Q1) in Deir Al-Adas region, Southern Syria. Nineteen VES points were executed by Schlumberger configuration, where three of them were made near the available boreholes for comparison. Hydraulic conductivity and transmissivity aquifer parameters are obtained by analyzing conjointly the available pumping test results from the existing boreholes and the electrical Dar-Zarrouk (R) parameters from VES data. An empirical equation between the transverse resistance (R), resulting from VES interpretation, and hydraulic conductivity determined from pumping test is established to estimate geophysically hydraulic conductivity of the Quaternary basalt aquifer. A closed agreement is obtained between the computed hydraulic conductivity and the one determined from pumping test. The established calibrated relationship is consequently used to extrapolate and estimate the transmissivity and the hydraulic conductivity parameters in all VES points, where geoelectrical measurements have been carried out. This extrapolation allows characterizing and deriving the spatial maps of hydraulic conductivity, transmissivity and other related hydrogeophysical parameters in the study area. The integrated acquired results give insights, particularly on the groundwater potentiality of the study region, direction of groundwater flux, and plausible lava directions flux. The resulting maps are important in future modeling processes oriented towards better exploiting of the aquifers. The proposed alternative technique is successfully applied in the study area and can be therefore applied for studying similar basaltic environments worldwide.
Czasopismo
Rocznik
Strony
1901--1918
Opis fizyczny
Bibliogr. 40 poz.
Twórcy
autor
  • Atomic Energy Commission of Syria, P.O. Box 6091, Damascus, Syria
autor
  • Atomic Energy Commission of Syria, P.O. Box 6091, Damascus, Syria
Bibliografia
  • 1. Al-Fares W (2016) Using vertical electrical soundings for characterizing hydrogeological and tectonic settings in Deir Al-Adas Area, Yarmouk Basin, Syria. Acta Geophys 64(3):610–632
  • 2. Archie E (1942) The electrical resistivity log as an aid in determining some reservoir characteristics. American institute of mineral and metal engineering, Technical Publication 1422, Petroleum Technology, pp 8–13
  • 3. Aretouyap Z, Nouayou R, Philippe NN, Asfahani J (2015) Aquifers productivity in the Pan-African context. J Earth Syst Sci 124(3):527–539. https://doi.org/10.1007/s12040-015-0561-1
  • 4. Aretouyap Z, Philippe NN, Nouayou R, Assatse WT, Asfahani J (2017) Aquifer porosity in the Pan-African semi-arid context. Environ Earth Sci 76:134. https://doi.org/10.1007/s12665-017-6440-0
  • 5. Asfahani J (2007) Neogene aquifer properties specified through the interpretation of electrical sounding data, Sallamiyeh region, central Syria. Hydrol Process 21:2934–2943. https://doi.org/10.1002/hyp.6510
  • 6. Asfahani J (2016) Hydraulic parameters estimation by using an approach based on vertical electrical soundings (VES) in the semi-arid Khanasser valley region, Syria. J Afr Earth Sci 117:196–206
  • 7. Asfahani J (2017) Porosity and hydraulic conductivity estimation of the basaltic aquifer in southern syria by using nuclear and electrical well logging techniques. Acta Geophis 65(4):765–775. https://doi.org/10.1007/s11600-017-0056-3
  • 8. Asfahani J, Ahmad Z (2020) Estimation of hydraulic parameters by using VES sounding and neural network techniques in the Semi Arid Khanasser Valley Region, Syria. Contrib Geophys Geod 50(1):113–133. https://doi.org/10.31577/congeo.2020.50.1.6
  • 9. Bhattacharya PK, Patra HP (1968) Direct current geoelectric sounding. Elsevier, New York, pp 4–7
  • 10. Ferre TPA, Binley A, Geller J, Hill E (2005) Hydrogeophysical methods in the laboratory scale, in hydrogeophysics. In: Rubin Y, Hubband S (eds) Water science and technology library. Springer, New York, pp 441–463
  • 11. Fitts CR (2002) Groundwater science. Elsevier, Dordrecht, pp 167–175
  • 12. Flathe H (1955) Possibilities and limitations in applying geoelectrical methods to hydrogeological problems in the coastal area of northwest Germany. Geophys Prospect 3(95):110
  • 13. Freeze RA, Cherry JA (1979) Groundwater. Prentice-Hall Inc, Englewood Cliffs
  • 14. General Company of Hydraulic Studies (1996) Project of investigations and studies of the Yarmouk hydrogeological basin, contract Contract No. 12
  • 15. Guérin R (2005) Borehole and surface based hydrogeophysics. Hydrogeol J 13:251–254. https://doi.org/10.1007/s10040-004-0415-4
  • 16. Keller GV (1988) Rock and mineral properties. In: Nabighian MN (ed) Electromagnetic methods in applied geophysics, 1: theory. Society of Exploration Geophysicists, Tulsa, pp 13–51
  • 17. Keller GV, Frischknecht FC (1966) Electrical methods in geoelectric prospecting. Pergamon Press 90–04:1966
  • 18. Khalil MA, Santos FAM (2013) Hydraulic conductivity estimation from resistivity logs: a case study in Nubian sandstone aquifer. Arab J Geosci 6(1):205–212. https://doi.org/10.1007/s12517-011-0343-2
  • 19. Koefoed O (1979) Geosounding principle-1. Elsevier, Amsterdam, pp 170–181
  • 20. Kruseman GP, de Ridder NA (1990) Analysis and evaluation of pumping test data, 2nd edn. International Institute for Land Reclamation and Improvement, Wageningen
  • 21. Kumar D, Rai SN, Thiagarajan S, Kumari R (2014) Evaluation of theterogeneous aquifers in hard rocks from resistivity sounding data in parts of Kalmeshwar taluk of Nagpur district, India. Curr Sci 107(7):1137–1145
  • 22. Maillet R (1947) The fundamental equation of electrical prospecting. Geophysics 12(529):556
  • 23. Marotz G (1968) Technische Grundlagen einer wasserspeicherung im naturlichen untergrund. Verlag Wasser Und Boden, Hamburg
  • 24. Niwas S, Celik M (2012) Equation estimation of porosity and hydraulic conductivity of Ruhrtal aquifer in Germany using near surface geophysics. J Appl Geophys 84:77–85. https://doi.org/10.1016/j.jappgeo.2012.06.001
  • 25. Niwas S, Singhal DC (1981) Estimation of aquifer transmissivity from Dar-Zarrouk parameters in porous media. J Hydrol 50:393–399
  • 26. Orellana E, Mooney HM (1966) Master Tables and curves for vertical electrical sounding over layered structures. Interciencia, Madrid
  • 27. Pengra DB, Wong PZ (1999) Low-frequency AC electrokinetics. Colloids Surf Phys Chem Eng Aspects 159(2–3):283–292. https://doi.org/10.1016/S0927-7757(99)00287-3
  • 28. Ponikarov V (1963) Geological map of Syria, 1:200 000, I-36-XII, I-37-VII sheet, V.O. Technoexport. Ministry of Industry, Damascus, Syria
  • 29. Sanchez V, Guadagnini XA, Carrera J (2006) Representative hydraulic conductivities in saturated groundwater flow. Rev Geophys 44:3002
  • 30. Selkhozprom Export (1982) Report on hydrological and hydrogeological surveys for the development scheme of water resources in Yarmouk River Basin, Syrian Arab Republic, Vol. 2. Hydrogeological and engineering geological condition, Selkhozprom Export, Moscow
  • 31. Sikandar P, Christen EW (2012) Geoelectrical sounding for the estimation of hydraulic conductivity of alluvial aquifers. Water Resour Manage 26:1201–1215
  • 32. Singh KP (2005) Nonlinear estimation of aquifer parameters from surficialsurfacial resistivity measurements. Hydrol Earth Syst Sci Discuss 2:917–923
  • 33. Slater L (2007) Near surface electrical characterization of hydraulic conductivity: from petrophysical properties to aquifer geometries—a review. Surv Geophys 28(2):169–197. https://doi.org/10.1007/s10712-007-9022-y
  • 34. Soupios P, Kouli M, Vallianatos F, Vafidis A, Stavroulakis G (2007) Estimation of aquifer hydraulic parameters from surfacial geophysical methods: a case study of Keritis basin in Chania (Crete, Greece). Hydrology 338:122–131. https://doi.org/10.1016/j.jhydrol.2007.02.028
  • 35. Szabo NP (2011) Shale volume estimation based on the factor analysis of well logging data. Acta Geophys 59(5):935–953. https://doi.org/10.2478/s11600-011-0034-0
  • 36. Velpen BPA (1988) “RESIST”, version 1.0, A package for the processing of resistivity sounding data on pc compatibles. M. Sc. Research Project, ITC, Deflt, the Netherlands
  • 37. Wolfart R (1966) Zur Geologie und Hydrogeologie von Syrien. Hannover
  • 38. Zohdy AAR (1989) A new method for the automatic interpretation of Schlumerger and Wenner sounding curves. Geophysics 54:245–253
  • 39. Zohdy AAR, Bisdorf RJ (1989) Programs for the automatic processing and interpretation of Schlumberger sounding curves in Quick Basic. US Geol Surv Open File Rep 89(13):64
  • 40. Zohdy AAR, Eaton GP, Mabeym DR (1974) Application of surface geophysics to groundwater investigations: in Tech. of water sources investigations of the U.S. Geol. survey book 2, chap, Dl. U.S. Dept. of the Interior, Geological Survey : U.S. Govt. Print
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ed1bc324-d953-4386-8c9b-d737adb5944f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.