Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The aim of the paper is to determine the aerodynamic forces acting on a torus-shaped structure fragment at high wind velocity which are impossible to obtain from the existing standard EN 1991-1-4 (the so-called wind standard). The most important problem is the correct modeling of turbulence and laminar-turbulent transition in the conditions of flow interference resulting from the presence of other obstacles. For this reason, forces are obtained by two methods: fluid-structure interaction (FSI, force transfer) and user-defined functions (UDF). Variations of the total aerodynamic lift force of the half of the torus with angle β and velocity of wind w, and the formula for estimating the horizontal force Pz perpendicular to drag force are presented. Additionally, useful engineering parameters (such as pressure distribution and air velocity field) are determined. The forces of wind influence on two cylinders and a torus-shaped object are obtained and compared.
Słowa kluczowe
Rocznik
Tom
Strony
art. no. e152706
Opis fizyczny
Bibliogr. 41 poz., rys., tab., wykr.
Twórcy
- Department of Mechanics and Bridges, Faculty of Civil Engineering, Silesian University of Technology, Akademicka 5, 44-100 Gliwice, Poland
autor
- Institute of Thermal Technology, Faculty of Energy and Environmental Engineering, Silesian University of Technology, Konarskiego 18, 44-100 Gliwice, Poland
autor
- Institute of Thermal Technology, Faculty of Energy and Environmental Engineering, Silesian University of Technology, Konarskiego 18, 44-100 Gliwice, Poland
Bibliografia
- [1] E. 1991-1-4, “Eurocode 1: Actions on structures -part 1-4: General actions – wind actions,” European Committee for Standardization, vol. 4, 2005.
- [2] A. Padewska, P. Szczepaniak, and A. Wawrzynek, “Oddziaływanie wiatru na obiekt o nietypowym kształcie,” Inżynieria i Budownictwo, vol. 71, pp. 381–385, 2015, (in Polish).
- [3] A. Padewska, “Pogłębiona analiza numeryczna oddziaływania wiatru na obiekty budowlane o nietypowym kształcie i układzie,” PhD thesis, Silesian University of Technology, 2016.
- [4] A. Padewska, P. Szczepaniak, and A. Wawrzynek, “Analysis of fluid-structure interaction of a torus subjected to wind loads,” Comput. Assist. Meth. Eng. Sci., vol. 21, pp. 151–167, 2014. [Online]. Available: https://cames.ippt.gov.pl/index.php/cames/article/view/49
- [5] T. Adachi, “The effect of surface roughness of a body in the high Reynolds-number flow,” Int. J. Rotating Mach., vol. 2, pp. 23–32, 1995, doi: 10.1155/S1023621X95000170.
- [6] A. Roshko, “Experiments on the flow past a circular cylinder at very high Reynolds number,” J. Fluid Mech., vol. 10, pp. 345–356, May 1961, doi: 10.1017/S0022112061000950.
- [7] J.G.W. Jones and J. Cincotta, “Aerodynamic forces on a stationary and oscillating circular cylinder at high reynolds numbers,” 1969.
- [8] S. Mingxuan, “Research on the external fluid flow of a round cylinder with CFD,” Highlights Sci. Eng. Technol., vol. 37, pp. 309–317, 2022.
- [9] S. Hazra, “CFD analysis of steady and transient flow over a cylinder in fluent: A study on von karman vortex shedding,” Sep. 2020. [Online]. Available: https://skill-lync.com/student-projects/steady-vs-unsteady-flow-over-a-cylinder-73
- [10] L.F.C. de Oliveira and L.J. Pedroso, “Preliminary analysis of flow over a circular cylinder using cfd,” in XLI Ibero-Latin American Congress on Congress on Computational Methods in Engineering, Nov. 2020.
- [11] G.M. Skonecki and J.M. Buick, “Numerical study of flow around two circular cylinders in tandem, side-by-side and staggered arrangements,” Fluids, vol. 8, p. 148, May 2023, doi: 10.3390/fluids8050148.
- [12] X. Yan, R. Carriveau, and D.S. Ting, “Vortical flow structures behind a torus with an aspect ratio of three,” Flow Meas. Instrum., vol. 68, p. 101571, Aug. 2019, doi: 10.1016/j.flowmeasinst.2019.101571.
- [13] P. Prabhudev, “Investigation of laminar flow inside a torus in openfoam,” Master’s thesis, KTH Royal Institute of Technology, School of Engineering Sciences, Apr. 2019.
- [14] D.M. Subramanian, S. Sanjay, K.K. Sanjay, N. Venkatesh, and Krithicksurya, “Investigate the perform of toroidal propellers using wind tunnel,” Int. Res. J. Adv. Eng. Hub (IRJAEH), vol. 2, pp. 1071–1074, Apr. 2024, doi: 10.47392/IRJAEH.2024.0148.
- [15] P.W. Bearman, “Circular cylinder wakes and vortex-induced vibrations,” J. Fluids Struct., vol. 27, 2011, doi: 10.1016/j.jfluidstructs.2011.03.021.
- [16] E. Błazik-Borowa, A. Flaga, and M. Kazakevič, Problemy interferencji aerodynamicznej dwóch walców kołowych. Polska Akademia Nauk, Komitet Inżynierii Lądowej i Wodnej, Instytut Podstawowych Problemów Techniki, Jan. 1997.
- [17] A. Borna, W.G. Habashi, G. McClure, and S.K. Nadarajah, “CFD-FSI simulation of vortex-induced vibrations of a circular cylinder with low mass-damping,” Wind Struct., vol. 16, pp. 411–431, 2013, doi: 10.12989/was.2013.16.5.411.
- [18] S. Kim and H. Sakamoto, “Characteristics of fluctuating lift forces of a circular cylinder during generation of vortex excitation,” Wind Struct., vol. 9, pp. 109–124, Apr. 2006, doi: 10.12989/was.2006.9.2.109.
- [19] M. Zhao, L. Cheng, H. An, and L. Lu, “Three-dimensional numerical simulation of vortex-induced vibration of an elastically mounted rigid circular cylinder in steady current,” J. Fluids. Struct., vol. 50, pp. 292–311, Oct. 2014, doi: 10.1016/j.jfluidstructs.2014.05.016.
- [20] A. Padewska-Jurczak, P. Szczepaniak, and Z. Buliński, “Numerical determination of wind forces acting on structural elements in the shape of a curved pipe,” Wind Struct., vol. 30, pp. 15–27, 2020, doi: 10.12989/was.2020.30.1.015.
- [21] Y. Inouel, S. Yamashita, and M. Kumada, “An experimental study on a wake of a torus body using uvp,” in 1st International Symposium on Ultrasonic Doppler Methods for Fluid Mechanics and Fluid Engineering- ISUD, 1996.
- [22] A.D. Vecchi, “Wake dynamics of flow past a curved circular cross-section body under cross-flow vibration,” Ph.D. dissertation, University of London, 2009.
- [23] A. Miliou, S. Sherwin, and J. Graham, “Wake topology of curved cylinders at low reynolds numbers,” Flow Turbul. Combust., vol. 71, pp. 147–160, 2003, doi: 10.1023/B:APPL.0000014920.94050.a2.
- [24] P. Szczepaniak and A. Padewska, “Wind load of a curved circular cylinder structures,” in 12th International Conference on New Trends in Statics and Dynamics of Buildings, N. Jendzelovsky and A. Grmanova, Eds. Bratislava: Slovak University of Technology, 2014, pp. 517–530.
- [25] ANSYS Inc., “Ansys documentation for release 15/customer training material,” 2013. [Online]. Available: https://www.ansys.com/academic/learning-resources
- [26] Dassault Systemes, “Introduction to Abaqus/CFD,” 2010.
- [27] T. Jiyuan, Y. Guan-Heng, and L. Chaoqun, Computational Fluid Dynamics, Second Edition; A Practical Approach. Butterworth-Heinemann, 2019.
- [28] F.R. Menter, “Two-equation eddy-viscosity turbulence models for engineering applications,” AIAA J., vol. 32, pp. 1598–1605, Aug. 1994, doi: 10.2514/3.12149.
- [29] J.H. Lienhard, Synopsis of Lift, Drag, and Vortex Frequency Data for Rigid Circular Cylinders. College of Engineering, Research DivisionTechnical Extension Service, Washington State University, 1966.
- [30] J. Anderson, Computational Fluid Dynamics: The Basics with Applications. 1995. McGrawhill Inc, 1995.
- [31] H. Versteeg and W. Malalasekra, An Introduction to Computational Fluid Dynamics: The Finite Volume Method-2nd Edition. Prentice Hall, 2007, vol. 43.
- [32] D.C. Wilcox, “Turbulence modeling for CFD (third edition),” DCW Industries, 2006.
- [33] K. Suga, T. Craft, and H. Iacovides, “Extending an analytical wall-function for turbulent flows over rough walls,” in Engineering Turbulence Modelling and Experiments 6, W. Rodi and M. Mulas, Eds. Amsterdam: Elsevier Science B.V., 2005, pp. 157–166, doi: 10.1016/B978-008044544-1/50014-5.
- [34] P. Catalano, M. Wang, G. Iaccarino, and P. Moin, “Numerical simulation of the flow around a circular cylinder at high reynolds numbers,” Int. Journal Heat Fluid Flow, vol. 24, pp. 463–469, Aug. 2003, doi: 10.1016/S0142-727X(03)00061-4.
- [35] A. Flaga, Inżynieria wiatrowa. Podstawy i zastosowania. Arkady, 2008.
- [36] K. Warschauer and J. Leene, “Experiments on mean and fluctuating pressures of circular cylinders at cross flow at very high reynolds number,” in Proc. International Conference on Wind Effects on Buildings and Structures, 1971, pp. 305–315.
- [37] M. Zdravkovich, Flow Around Circular Cylinders. Volume 2: Applications. Oxford University Press, 2003.
- [38] Y. Bazilevs, K. Takizawa, and T.E. Tezduyar, Computational Fluid–Structure Interaction. Wiley, Jan. 2013, doi: 10.1002/9781118483565.
- [39] A. Noorani, G.E. Khoury, and P. Schlatter, “Evolution of turbulence characteristics from straight to curved pipes,” Int. J. Heat Fluid Flow, vol. 41, pp. 16–26, 2013.
- [40] A. Padewska, P. Szczepaniak, and A. Wawrzynek, “Porównanie sił aerodynamicznych działających na połowę torusa i dwa walce o tej samej długości,” Modelowanie Inżynierskie, vol. 29, pp. 52–57, 2016.
- [41] M. Zdravkovich, “Review of interference-induced oscillations in flow past two parallel circular cylinders in various arrangements,” J. Wind Eng. Ind. Aerodyn., vol. 28, pp. 183–199, Aug. 1988, doi: 10.1016/0167-6105(88)90115-8.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ed175a62-49fd-4923-8fbd-e62213016881
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.